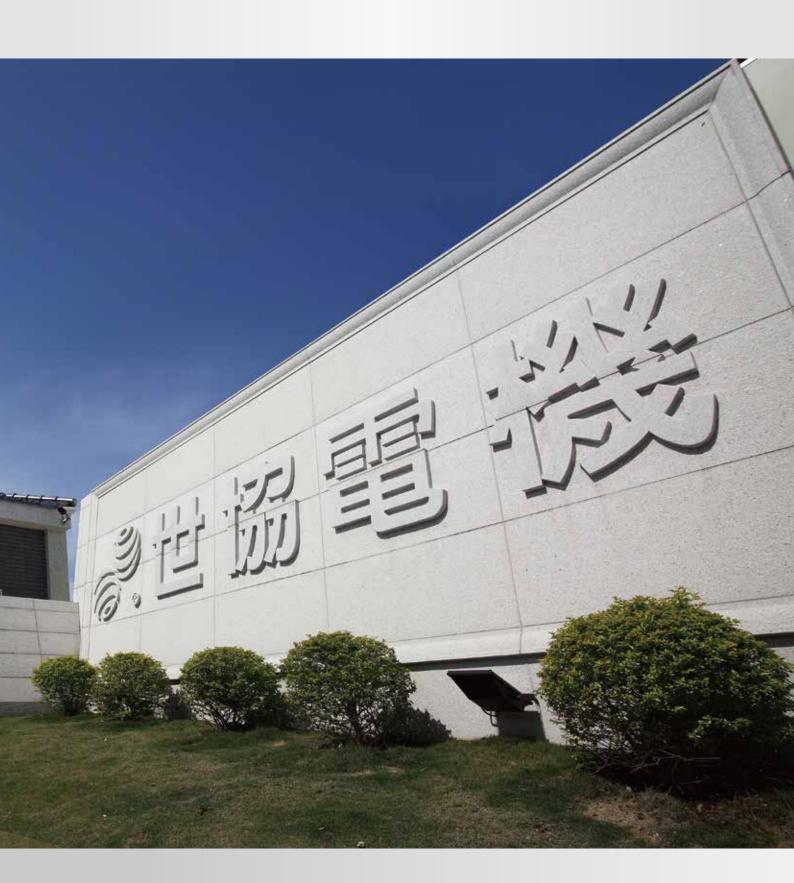


Sesame Motor Corp., A leading brand in gear technology.


# PLANETARY GEARHEADS



100% Made in Taiwan

www.sesamemotor.com





## TABLE OF CONTENTS



#### SESAME MOTOR

- 01 Company Profile
- 04 Trade Mark & Certification
- 05 Corporate Environment
- 07 **Production Line**
- 80 **Applications**



#### PLANETARY GEARHEADS

- 09 Planetary Gearheads Series Lineup
- 11 Coding System
- 13 Planetary Gearbox
  - **Operation Manual**
- 15 Planetary Gearbox with Motor
  - Mounting Instructions Selection of the Optimum Gearbox



17

#### PREMIUM TYPE (HELICAL GEAR)

- 19 **PHL Series** 45 **PGH Series** 27 PHFR Series 51 **PUR Series**
- PHF Series 35 57 **PUL Series**



### PRECISION TYPE (HELICAL GEAR) / PRECISION TYPE (SPUR GEAR)

- 63 **PGLH Series** 89 **PGRH Series** 69 PGL Series 97 PGR Series
- 77 **PGC Series** 103 PGFR Series 83 **PGE Series** 111 PGF Series

#### STANDARD TYPE (SPUR GEAR)

- **PEL Series** 121
- **PEC Series**
- 133 **PEE Series**



### PRIMARY TYPE (SPUR GEAR)

- 139 **PBC Series**
- **PBE Series**
- 151 **PAE** Series
- 附.157 Tightening Torque Table



# **Company Profile**

Sesame Motor Corp., as a leading brand in Motor and gear reducer technology. "SESAME MOTOR CORP." Founded in 1990, have more than 25 years of professional motor and gearbox manufacturing and sales experience. SESAME MOTOR's 7000 square meters factory locates at Sheng Kang. Adding modern workshop facilities with the effective integration of ERP systems, purchase new processing and testing equipment; as we continuously enhance key parts' productivity we had not only expending overall productivity, shorten delivery, and ensure products' quality do achieve customer satisfaction. SESAME MOTOR products have received unanimous praise.



## **Quality Policy:**

"Honesty", to provide integrity and pragmatic services

"Creativity", to create customer competitive advantage

"Positivity", positive support and responsibility

"Innovation", moving forward of technical innovation

## **Environmental Policy:**

Full participation to comply with eco-regulation Prevent pollution; save energy and reduce waste Keep improving and propagating Green Concept

## **PLANETARY GEARHEADS**

"SESAME MOTOR" is built base on spirit of "customer satisfaction, priority service" philosophy, providing three privileges "best quality, fastest delivery, and best sale service". Our products have obtained high market share in Taiwan, that had lead "SESAME MOTOR" be a well-known brand. In addition to our official branch in Shanghai, we have agents in the Unite States, Germany, Denmark, Poland, UK, Turkey, Russia, Korea, Japan, China, Thailand, Malaysia and India.

"SESAME MOTOR" also has a professional R & D team and experienced production-related sectors; can provide high accuracy products for different customer needs; high-quality gear and the surrounding transmission components, develop and produce other kinds of gear; customized motor products, products with detailed-oriented, high precision, low noise, high efficiency, and good quality properties. Product development are aiming three directions "science and technology, environmental protection, and innovation". Product will be used in tool machines, industrial robots, semiconductor devices, aircraft industrial, medical and rehabilitation equipment, electric scooter, electric bike, auto storage devices, green energy-related industries, testing and food machinery, bakery equipment, packaging machinery, agricultural equipment and other sophisticated automation equipment.





# **Company Profile**

"SESAME MOTOR" has been successively obtained CE,CCC,UL, ISO9001 and ISO14001 certification and honorary awards. As we continuously, progressively for created finest quality products; with "Honesty" for providing integrity and pragmatic service; with "Creativity" given customer "Positivity" to support & responsible for the efficiency of productivity; with "Innovation" on profession and knowledge of knowhow, by these four philosophy management, we aims to become the first market trend indicators. "SESAME MOTOR" strong operating team adhere to the blue ocean strategy of entering the international market and high-tech field, to create the future more professional, better quality of sustainable management systems, establishment of "a combination of leading technology and brand reputation" for competitive advantage.



# **Trade Mark & Certification**







**CE** Certification

**UL** Certification

ISO 9001:2008 ISO 14001:2004



China Compulsory Certification (CCC)

P

Planetary Gearhead PHL Series China SIPO Patent





























The United States, European Union, China, Taiwan, Korea, Philippines, Vietnam, Malaysia, Singapore ...etc. trade mark certifications.



# **Corporate Environment**













# **Corporate Environment**













# **Production Line**



Planetary Gearheads Production Line



Induction Motor and Speed Reducer Production Line



Precision Gear Motor Production Line

# **Applications**

#### Applications of Planetary Gearhead

#### Machine Tools

Metal Cutting Machines, Machining Centers, CNC Drilling Machines, Lathes and Turning Machines, Milling and Boring Machines, Grinding Machines, Drilling Machines, Planning Machines, Metal Forming Machine Tools, Presses, Tube and Wire Processing Machines.

#### **Industry Machinery**

Packaging Machinery, Food and Beverage Processing Machinery, Bakery Equipment, Agricultural Machinery,

Textile Machinery, Shoemaking Machinery, Wood Working Machinery, Printing Machinery, Plastic processing

Machinery, laser Cutting and welding Machines.

#### **Automation Equipment**

Industrial Robots, Semiconductor Devices, Automatic Storage System, Surface Treatment Equipments.

#### Aerospace Industry

Medical and Rehabilitation Equipment

Electric Scooter

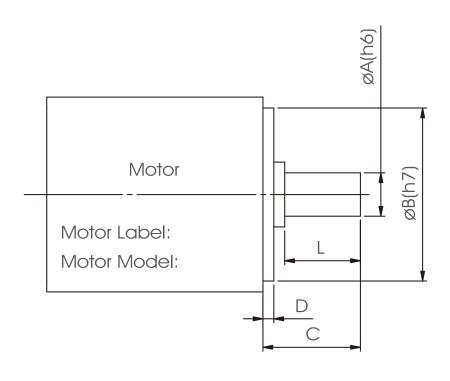
Green Energy-Related Industries

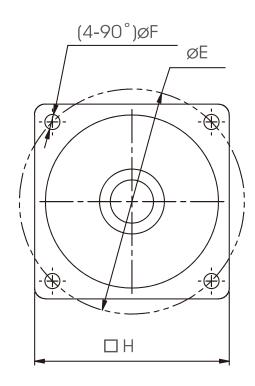
**Testing Devices** 

Automation and Precise Positioning Equipment with Servo Motors



## PLANETARY GEARHEADS SERIES LINEUP


| PLANETARY GEARHEAL               | DS SERIES LINEUP                       |                                        |                                |               |             |             |
|----------------------------------|----------------------------------------|----------------------------------------|--------------------------------|---------------|-------------|-------------|
|                                  |                                        | Output Shaft                           |                                | Output Flange | Rigl        | ht Angle    |
| Premium Type<br>(Helical Gear)   | PHL Series High Precision              | PGH Series<br>High Performance         | PUL Series<br>High Radial Load | PHF Series    | PHFR Series | PUR Series  |
| Precision Type<br>(Helical Gear) |                                        | PGLH Series                            |                                | PGF Series    | PGFR Series | PGRH Series |
| Precision Type<br>(Spur Gear)    | PGL Series                             | PGC Series                             | PGE Series                     |               |             | PGR Series  |
| Standard Type<br>(Spur Gear)     | PEL Series                             | PEC Series                             | PEE Series                     |               |             |             |
| Primary Type<br>(Spur Gear)      | PBC Series<br>High Ratio (max. i=1000) | PBE Series<br>High Ratio (max. i=1000) | PAE Series                     |               |             |             |


Products due to human error, natural disasters or other factors lead to poor or damaged, will not be covered under warranty.

### CODING SYSTEM

P (Planetary) (Grade) H: Premium Type Helical Series G: Precision Series E: Standard Series U: Heavy Duty Series B: Muti-Ratio Series T: Muti-Shafted Series (Connection) L: Square Housing with Flange C: Round Housing without Flange E: Round Housing with Flange R: Right Angle F: Plate Type H: Square Flange Helical Gear (Square Flange Helical Gear for G Grade (Precision Series) Only) LH: Square Flange Helical Gear RH: Right Angle Helical Gear FR: Output Flange Right Angle Type 60 (Size) 42: 42 60: 60 90: 90 115: 115 142: 142 180: 180 220: 220 Single Stage: 3,4,5,6,7,8,9,10 30 (Speed Reduction Double Stage: 12, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100 Ratio) Muti-Stage: 125~1000 (Backlash) PO: Micro Backlash P 1 P1: Precision Backlash P2: Standard Backlash (Customer Specification) **MOTOR** (Motor Model)

## FILL IN DATA OF MOTOR





#### **SPECIFICATIONS**

| Motor<br>Shaft<br>Dia. | Flange<br>Dia. | Motor<br>Shaft<br>Length | Flange<br>Height | P.C.D<br>of<br>Bore | Bore<br>Dia. | Motor<br>Flange<br>Square | Actual Length<br>of<br>Motor Shaft | Backlash |
|------------------------|----------------|--------------------------|------------------|---------------------|--------------|---------------------------|------------------------------------|----------|
| øA(h6)                 | øB(h7)         | С                        | D                | ØΕ                  | øF           | □Н                        | L                                  | PO/P1/P2 |
|                        |                |                          |                  |                     |              |                           |                                    |          |

\*Sesame Planetary Gearheads are produced under strickly exclusive pairing process to ensure accuracy and lifespan.

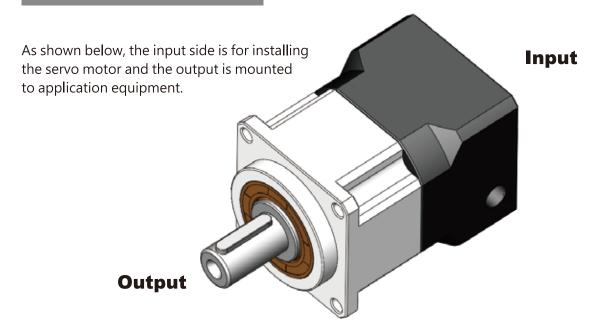
#### PLANETARY GEARBOX OPERATION MANUAL

## 1.NOTE

### 1.1 Preparation before installation

- Please read this operation manual before using this gearbox. Any problems caused by inappropriate operation contrary with the manual, or damage caused by natural disasters, or restructure the gear-box without our permission, Sesame will not hold any responsibility nor will the gearbox be cover by warranty.
- Warranty start within one year after purchase the gearbox. Within warranty period, if gearbox damage is not caused by operation error nor by natural disaster, then please send back the gearbox, we should replace the damage.
- Installation, disassemble, maintenance on the gearbox, needed to be performing by trained technicians.
- According to the application and operation environment, the gearbox temperature might be raising after period of running. Please do not touch the gearbox directly during operation, or right off from operation.

- Do not touch any rotating components when the gearbox is running. Ensure that the plugs of the gearbox were inserted after installation.
   Avoid any small object fall into the gearbox.
- Handle the gearbox gently during installation, do not knock the gearbox by any tool, to avoid the influence of running accuracy.
- Do not disassemble or modify gearhbox to prevent injury or equipment damage .
- Synthetic lubricant is sealed in gear there is no need to change lubricant.


#### 1.2 Installation environment limitation

Gearbox must be installed under following terms to prevent damages which are not covered by warranty.

- Gearbox is designed or manufactured, to be used in the other of mechanical equipment assembly.
- Operate temperature is between -10 °C to + 90 °C.
- Operate altitude may not be higher than 1000m above sea-level
- Avoid continuity vibration or hit.

- Avoid Gearbox used in flammable gas or corrosion gas environment.
- Humidity: no more than 85%, in order to avoid condensation.
- Avoid direct sunlight, dust accumulation.
- Avoid water or oil splashed.
- Used in good ventilated place.

## 2.Gearbox Introduction



To ensure the product performance, both the input and output ends must be protected carefully to avoid any damage and cause improper operation.

### PLANETARY GEARBOX WITH MOTOR MOUNTING INSTRUCTIONS

## For General Type

Check the motor and

mounting surface.

1



Take off the plug from the bracket. Revolve the set collar until the bolt is aligned with the hole.

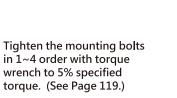


2

3



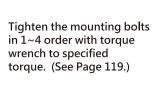
Make sure the motor shaft size. Choose the right bushing if necessary.




Remove the key from the motor shaft. Mounting the balance key if necessary.

As installing on flatted shaft, be sure to align the collet gap over the flat and the set collar bolt perpendicular to the flat.




5



Install gearbox and motor vertically. Tighten the set collar bolt with torque wrench to specified toeque. (See Page 119.)



7





Put the plug back.



8

2

6

8

## For Hollow Spindle

Check the motor and

mounting surface.

1



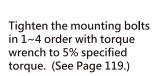
Take off the plug from the adapter plate. Revolve the set collar until the bolt is aligned with the hole.



3



Make sure the motor shaft size. Choose the right bushing if necessary.

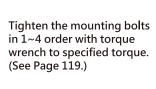



Remove the key from the motor shaft. Mounting the balance key if necessary.

As installing on flatted shaft, be sure to align the collet gap over the flat and the set collar bolt perpendicular to the flat.



5

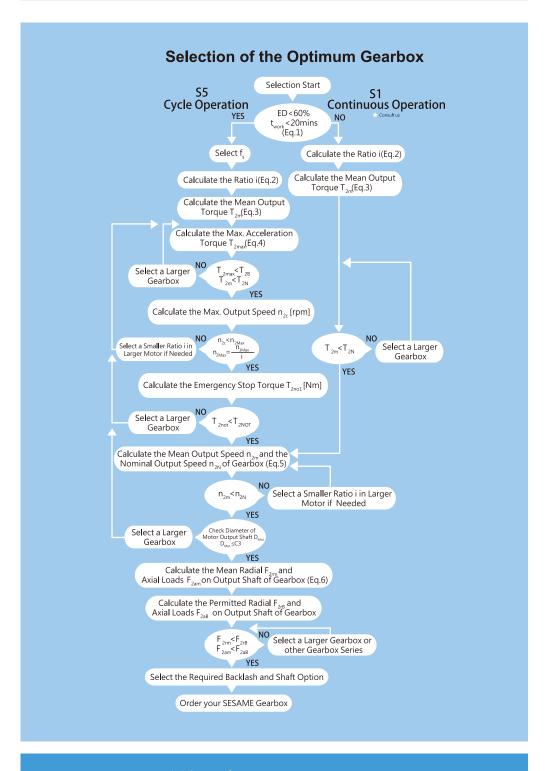





Install gearbox and motor vertically. Tighten the set collar bolt with torque wrench to specified toeque. (See Page 119.)

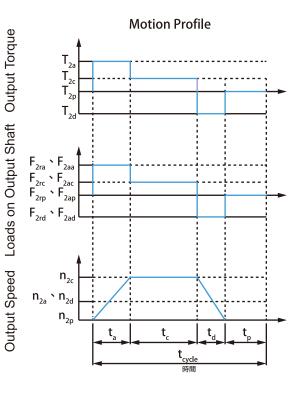


7






Put the plug back.




#### SELECTION OF THE OPTIMUM GEARBOX



Recommended (for S5 Cycle Operation)
The general design is given for The optimal design is given for Lead to

J Motor Inertia



1. ED = 
$$\frac{t_{\text{work}}}{t_{\text{cycle}}} \times 100\%, t_{\text{work}} = t_{\text{a}} + t_{\text{c}} + t_{\text{d}}$$

Index: a. Acceleration, c. Constant, d. Deceleration, p. Pause (Eq.1)

$$2.\, i \mathrel{{\underline{\,}}} \mathrel{{\underline{\,}}} \frac{n_{_{m}}}{n_{_{work}}}$$

 ${\bf n_m}$  Output Speed of the Motor  ${\bf n_{work}}$  Working Speed (Eq.2)

$$3.\,T_{2m} = \sqrt[3]{\frac{n_{2a} \times t_a \times T_{2a}^{\phantom{2a}3} \times n_{2c} \times t_c \times T_{2c}^{\phantom{2a}3} + n_{2d} \times t_d \times T_{2d}^{\phantom{2a}3}}{n_{2a} \times t_a + n_{2c} \times t_c + n_{2d} \times t_d}}}$$
(Eq.3)

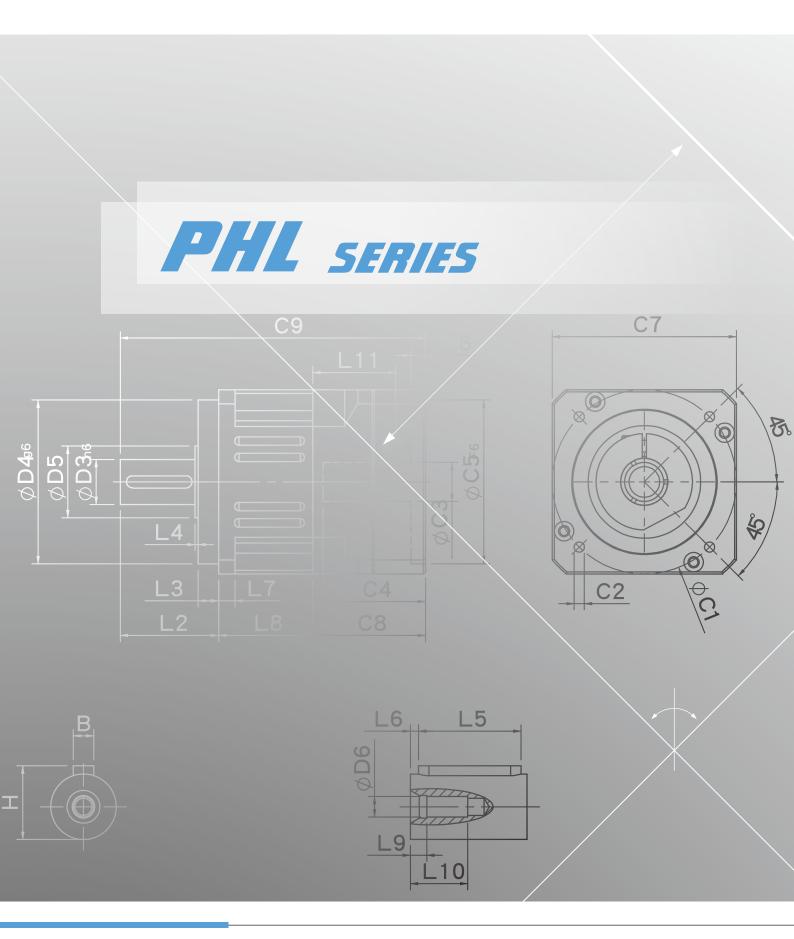
4. 
$$T_{2max} = T_{mB} \times i \times f_{s} \times \eta$$

#### Where f<sub>e</sub> is

| f <sub>s</sub> | No. of Cycles / hr |
|----------------|--------------------|
| 1.0            | 0 ~ 1,000          |
| 1.1            | 1,000 ~ 1,500      |
| 1.3            | 1,500 ~ 2,000      |
| 1.6            | 2,000 ~ 3,000      |
| 1.8            | 3,000 ~ 5,000      |

 $T_{mB}$  Max. Output Torque of the Motor  $\eta$  Efficiency of the Gearbox (Eq.4)

5. 
$$n_{2a} = n_{2d} = \frac{1}{2} \times n_{2c}$$


$$n_{2m} = \frac{n_{2a} \times t_a + n_{2c} \times t_c + n_{2d} \times t_d}{t_a + t_c + t_d}$$

$$n_{2N} = \frac{n_{1N}}{i}$$
(Eq.5)

$$6. \, F_{2rm} = 3 \sqrt{\frac{n_{2a} \times t_a \times F_{2ra}{}^3 \times n_{2c} \times t_c \times F_{2rc}{}^3 + n_{2d} \times t_d \times F_{2rd}{}^3}{n_{2a} \times t_a + n_{2c} \times t_c + n_{2d} \times t_d}}$$

$$F_{2am} = 3 \sqrt{\frac{n_{2a} \times t_a \times F_{2aa}{}^3 \times n_{2c} \times t_c \times F_{2ac}{}^3 + n_{2d} \times t_d \times F_{2ad}{}^3}{n_{2a} \times t_a + n_{2c} \times t_c + n_{2d} \times t_d}}$$
(Eq. 6)







### PHL SERIES FEATURES



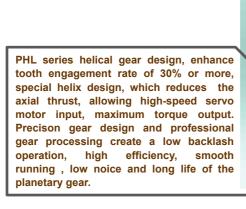
Planetary arm bracket and output shaft are one-piece constructed, setting bearing apart for larger span to reach the largest reverse rigid and contribute high axis radial load capacity.

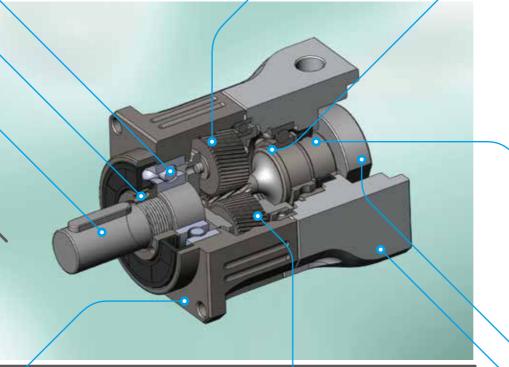


Special locking mechanisms designed of the output shaft ensure its integration closely with positioning gear, power transmission efficiency, and eternal precision.



Alloy steel gear with unique heat treatment. Additionally, with gear grinding processing to get the best accuracy, high wear resistance and high impact toughness.





The sun gear bearing is placed directly into the planetary arm bracket, the overall mechanical structure designed to ensure concentricity of the transmission components.

given it maintenance-free.



Grinding process to smooth surface of output shaft, and with oil-seal to minimum friction coefficient and reducing sart up load; result in the best seal-ability and extended lifespan.



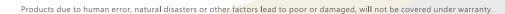


Input-end and motor shaft are coupled through a dynamic balanced collar clamping mechanism to ensure connection interface concentricity and zero slip power transmission at high speed.

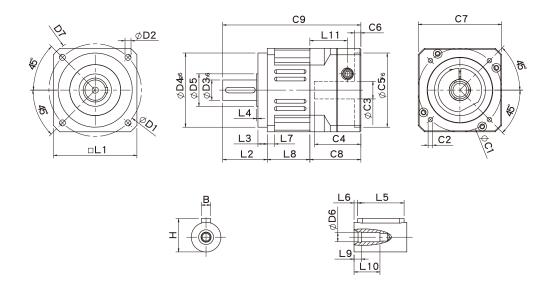
High-tech oil seal design on the upper lip guard against dust intruder, lower lip to guard against oil leak. Protection grade IP65 safeguards fully avoid leaking problem, and



The gear box and internal gear ring are one-piece constructed, and then processed with advanced Germany gear shaper machinery for high-precision, high torque and abrade consumption.


Advanced electroless nickel plating surface treatment resists scratch and corrosion. Suitable for stringent require of high-tech equipement.




Planet gear transmission interface equipped with needle bearings, full needle roller bearings aligned without retainer achieve maximum exposure but smallest gap tolerances. Enhance over-all gear structure rigid and out put torque.



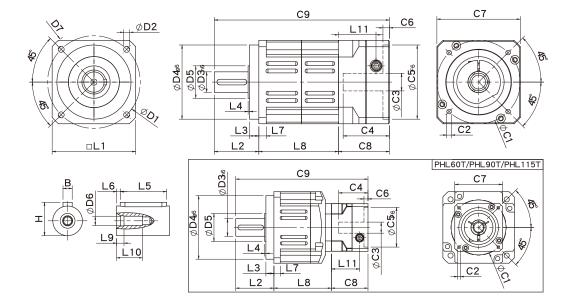
Advanced motor bracket design coupled with the input shaft bushing is easy to mount to any servo or stepper motor.



# PHL Single Stage Dimensions



# Specifications


| Dimensions         | PHL42   | PHL60   | PHL90    |
|--------------------|---------|---------|----------|
| D1                 | 50      | 70      | 100      |
| D2                 | 3.4     | 5.5     | 6.5      |
| D3 h6              | 13      | 16      | 22       |
| D4 g6              | 35      | 50      | 80       |
| D5                 | 15      | 25      | 35       |
| D6                 | M4x0.7P | M5x0.8P | M8x1.25P |
| D7                 | 56      | 80      | 118      |
| L1                 | 42.6    | 60      | 90       |
| L2                 | 26      | 37      | 48       |
| L3                 | 5.5     | 7       | 10       |
| L4                 | 1       | 1.5     | 1.5      |
| L5                 | 15      | 25      | 32       |
| L6                 | 2       | 2       | 3        |
| L7                 | 4       | 6       | 8        |
| L8                 | 28.3    | 37      | 46       |
| L9                 | 4       | 4       | 4.5      |
| L10                | 14      | 16.5    | 20.5     |
| L11                | 29      | 35.5    | 40.5     |
| C1 <sup>2</sup>    | 46      | 70      | 90       |
| C2 <sup>2</sup>    | M4x0.7P | M5x0.8P | M6x1.0P  |
| C3 <sup>2</sup>    | ≦8      | ≦14     | ≦19/≦24  |
| C4 <sup>2</sup>    | 27      | 37      | 47       |
| C5 <sup>2</sup> F6 | 30      | 50      | 70       |
| C6 <sup>2</sup>    | 4       | 4       | 6        |
| C7 <sup>2</sup>    | 42.6    | 60      | 90       |
| C8 <sup>2</sup>    | 38.5    | 46      | 55       |
| C9 <sup>2</sup>    | 92.8    | 120     | 149      |
| В                  | 5       | 5       | 6        |
| Н                  | 15      | 18      | 24.5     |

 $<sup>\</sup>star$  C1~C9 are motor specific dimensions(metric std shown ),Size may vary according to motor flange.

 $<sup>\</sup>star$  Specification subject to change without notice.

# Series

# PHL Double Stage Dimensions



## Specifications

| Dimensions                    | PHL42   | PHL60   | PHL60T  | PHL90   | PHL90T  |  |
|-------------------------------|---------|---------|---------|---------|---------|--|
| D1                            | 50      | 7       | 70      | 10      | 00      |  |
| D2                            | 3.4     | 5       | 5.5     | 6.5     |         |  |
| D3 h6                         | 13      | 1       | L6      | 2       | 22      |  |
| D4 g6                         | 35      |         | 50      | 8       | 30      |  |
| D5                            | 15      | 2       | 25      | 3       | 35      |  |
| D6                            | M4x0.7P | M5      | к0.8P   | M8x     | 1.25P   |  |
| D7                            | 56      | 3       | 30      | 1:      | 18      |  |
| L1                            | 42.6    | (       | 50      | g       | 90      |  |
| L2                            | 26      | 3       | 37      | 4       | 18      |  |
| L3                            | 5.5     |         | 7       | 1       | .0      |  |
| L4                            | 1.5     | 1       | 5       | 1       | 5       |  |
| L5                            | 15      | 2       | 25      | 32      |         |  |
| L6                            | 2       |         | 2       | 3       |         |  |
| L7                            | 4       |         | 6       | 8       |         |  |
| L8                            | 55.3    | 70      | 65.5    | 86      | 78.5    |  |
| L9                            | 4       |         | 4       | 4.5     |         |  |
| L10                           | 14      | 1       | 6.5     | 20      | 0.5     |  |
| L11                           | 29      | 35.5    | 29      | 40.5    | 35.5    |  |
| C1 <sup>2</sup>               | 46      | 70      | 46      | 90      | 70      |  |
| C2 <sup>2</sup>               | M4x0.7P | M5x0.8P | M5x0.8P | M6x1.0P | M5x0.8P |  |
| C3 <sup>2</sup>               | ≦8      | ≦14     | ≦8      | ≦19/≦24 | ≦14     |  |
| C4 <sup>2</sup>               | 27      | 37      | 27      | 47      | 37      |  |
| C5 <sup>2</sup> <sub>F6</sub> | 30      | 50      | 30      | 70      | 50      |  |
| C6 <sup>2</sup>               | 4       | 4       | 4       | 6       | 4       |  |
| C7 <sup>2</sup>               | 42.6    | 60      | 42.6    | 90      | 60      |  |
| C8 <sup>2</sup>               | 38.5    | 46      | 38.5    | 55      | 46      |  |
| C9 <sup>2</sup>               | 119.8   | 153     | 141     | 189     | 172.5   |  |
| В                             | 5       |         | 5       |         | 6       |  |
| Н                             | 15      | 1       | 18      | 24      | 4.5     |  |

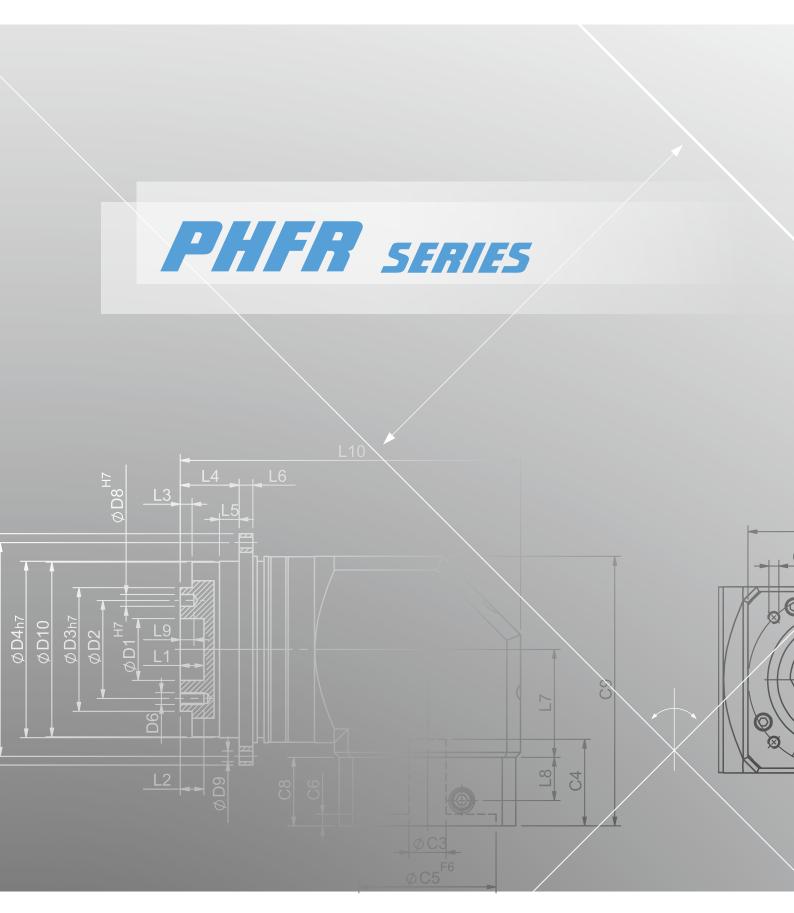
<sup>★</sup> C1~C9 are motor specific dimensions(metric std shown ), Size may vary according to motor flange.

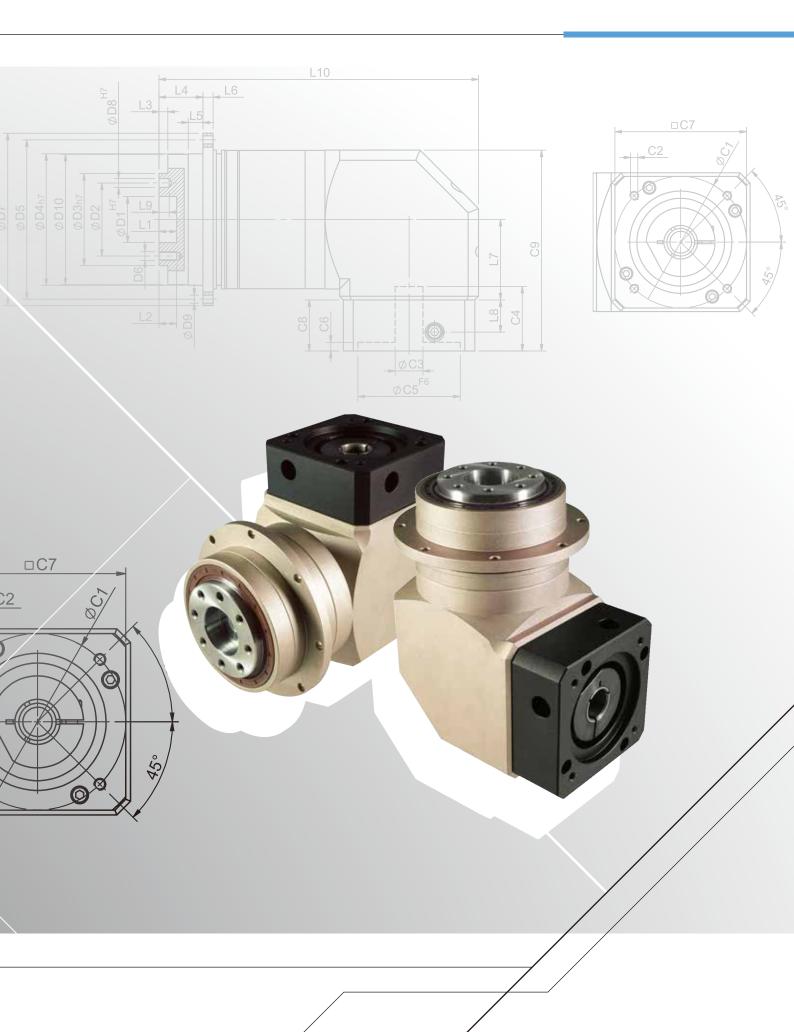
 $<sup>\</sup>bigstar$  Specification subject to change without notice.

# PHL Specifications Table

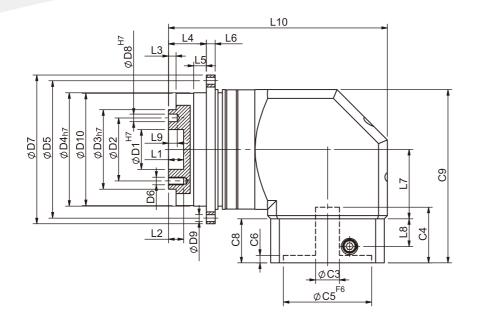
| Specifica                | tions                                             | Stage | Ratio            | PHL-42                                         | PHL-60                                                  | PHL-90                                                          |
|--------------------------|---------------------------------------------------|-------|------------------|------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|
|                          |                                                   |       | 3                | 19                                             | 53                                                      | 145                                                             |
|                          |                                                   |       | 4                | 20                                             | 55                                                      | 150                                                             |
|                          |                                                   |       | 5                | 17                                             | 54                                                      | 140                                                             |
|                          |                                                   |       | 6                | 15                                             | 46                                                      | 135                                                             |
|                          |                                                   | 1     | 7                | 14                                             | 44                                                      | 125                                                             |
|                          |                                                   |       | 8                | 12                                             | 41                                                      | 110                                                             |
|                          |                                                   |       | 9                | 11                                             | 37                                                      | 95.0                                                            |
|                          |                                                   |       | 10               | 11                                             | 37                                                      | 95.0                                                            |
|                          |                                                   | Stage | Ratio            | PHL-42                                         | PHL-60(T)                                               | PHL-90(T)                                                       |
| Nominal Output Tor       | aue N•m                                           |       | 15               | 19                                             | 53                                                      | 145                                                             |
|                          | 1                                                 |       | 20               | 20                                             | 55                                                      | 150                                                             |
|                          |                                                   |       | 25               | 17                                             | 54                                                      | 140                                                             |
|                          |                                                   |       | 30               | 17                                             | 54                                                      | 140                                                             |
|                          |                                                   |       | 35               | 17                                             | 54                                                      | 140                                                             |
|                          |                                                   |       | 40               | 17                                             | 54                                                      | 140                                                             |
|                          |                                                   | 2     | 45               | 17                                             | 54                                                      | 140                                                             |
|                          |                                                   |       | 50               |                                                |                                                         |                                                                 |
|                          |                                                   |       |                  | 17                                             | 54                                                      | 140                                                             |
|                          |                                                   |       | 60               | 15                                             | 46                                                      | 135                                                             |
|                          |                                                   |       | 70               | 14                                             | 44                                                      | 125                                                             |
|                          |                                                   |       | 80               | 12                                             | 41                                                      | 110                                                             |
|                          |                                                   |       | 90               | 11                                             | 37                                                      | 95                                                              |
|                          |                                                   |       | 100              | 11                                             | 37                                                      | 95                                                              |
| Emergency Stop Tor       | que N•m                                           |       | (* Ma            | 3.0 times of Nor<br>= ax. Output Torque T2B    | ninal Output Torque<br>:60% of Emergency S              | Stop Torque)                                                    |
| Nominal Input Spe        | ed rpm                                            | 1,2   | 3-100            | 5000                                           | 5000                                                    | 4000                                                            |
| Max. Input Speed         | l rpm                                             | 1,2   | 3-100            | 10000                                          | 10000                                                   | 8000                                                            |
|                          |                                                   |       |                  |                                                |                                                         |                                                                 |
| Micro Backlash PO        | arcmin                                            | 1     | 3-10             | ≦ 1                                            | ≦ 1                                                     | ≦1                                                              |
| IVIICIO Backiasii Po     | arcillin                                          | 2     | 12-100           | ≦3                                             | ≦3                                                      | ≦3                                                              |
|                          |                                                   | 1     | 3-10             | ≦3                                             | ≦ 3                                                     | ≦ 3                                                             |
| Precision Backlash       | P1 arcmin                                         | 2     | 12-100           | _ 5<br>≦ 5                                     | = 5<br>≦ 5                                              | _ 5<br>≦ 5                                                      |
|                          |                                                   |       |                  |                                                |                                                         |                                                                 |
| Standard Backlash        | P2 arcmin                                         | 1     | 3-10             | ≦ 5                                            | ≦ 5                                                     | ≦ 5                                                             |
| Staridard backlasiri     | Z diciniii                                        | 2     | 12-100           | ≦7                                             | ≦7                                                      | ≦7                                                              |
| Torsional Rigidity       | , N • m<br>/arcmin                                | 1,2   | 3-100            | 2.5                                            | 6                                                       | 12                                                              |
| Max. Radial Load         | N • m                                             | 1,2   | 3-100            | 760                                            | 1570                                                    | 2780                                                            |
| Max. Axial Load          | N                                                 | 1,2   | 3-100            | 410                                            | 750                                                     | 1870                                                            |
| Operating Temp.          | °C                                                |       | 3-100            |                                                | -10 °C ~+90 °C                                          |                                                                 |
|                          |                                                   | +     |                  | 20.055.                                        |                                                         |                                                                 |
| Service Life             | hr                                                |       | 3-100            | 20,000 (1                                      | 0,000/ Continuous of                                    | operation)                                                      |
| Γ.(C ! · · · ·           | 0/                                                | 1     | 3-10             |                                                | ≧ 97%                                                   |                                                                 |
| Efficiency               | %                                                 | 2     | 12-100           |                                                | ≧ 94%                                                   |                                                                 |
|                          |                                                   | 1     | 3-10             | 0.6                                            | 1.3                                                     | 3.5                                                             |
| Weight                   | kg                                                |       | 1                |                                                |                                                         |                                                                 |
|                          |                                                   | 2     | 12-100           | 0.9                                            | 2.0/1.6                                                 | 5.6/3.9                                                         |
| Mounting Position        | า -                                               | 1,2   | 3-100            |                                                | Any direction                                           |                                                                 |
| Noise Level <sup>2</sup> | dBA/1m                                            | 1,2   | 3-100            | 56                                             | 58                                                      | 60                                                              |
|                          |                                                   |       |                  |                                                |                                                         |                                                                 |
| Protection Class         | -                                                 | 1,2   | 3-100            |                                                | IP65                                                    |                                                                 |
| Lubrication              | -                                                 | 1,2   | 3-100            |                                                | Synthetic Lubricant                                     |                                                                 |
|                          |                                                   |       | Inertia(J:       | 1)                                             | ,                                                       |                                                                 |
|                          |                                                   |       |                  |                                                | DUI 60                                                  | DHI OO                                                          |
| Char-                    | D-+:-                                             |       |                  | PHL-42                                         | PHL-60                                                  | PHL-90                                                          |
| Stage                    | Ratio                                             |       | unit             |                                                |                                                         |                                                                 |
| Stage                    | Ratio 3                                           |       | unit             | 0.03                                           | 0.23                                                    | 0.97                                                            |
|                          |                                                   |       | unit             | 0.03<br>0.02                                   | 0.23<br>0.18                                            |                                                                 |
| Stage                    | 3 4                                               |       | unit             | 0.02                                           | 0.18                                                    | 0.97<br>0.67                                                    |
|                          | 3<br>4<br>5                                       |       | unit             | 0.02<br>0.02                                   | 0.18<br>0.17                                            | 0.97<br>0.67<br>0.65                                            |
|                          | 3<br>4<br>5<br>6/7/8                              |       | -                | 0.02<br>0.02<br>0.02                           | 0.18<br>0.17<br>0.14                                    | 0.97<br>0.67<br>0.65<br>0.60                                    |
|                          | 3<br>4<br>5                                       |       | unit<br>Kg • cm² | 0.02<br>0.02                                   | 0.18<br>0.17<br>0.14<br>0.14                            | 0.97<br>0.67<br>0.65<br>0.60<br>0.58                            |
|                          | 3<br>4<br>5<br>6/7/8                              |       | -                | 0.02<br>0.02<br>0.02                           | 0.18<br>0.17<br>0.14                                    | 0.97<br>0.67<br>0.65<br>0.60                                    |
| 1                        | 3<br>4<br>5<br>6/7/8<br>9/10<br>Ratio             |       | -                | 0.02<br>0.02<br>0.02<br>0.03<br>PHL-42         | 0.18<br>0.17<br>0.14<br>0.14<br>PHL-60(T)               | 0.97<br>0.67<br>0.65<br>0.60<br>0.58<br>PHL-90(T)               |
| 1<br>Stage               | 3<br>4<br>5<br>6/7/8<br>9/10<br>Ratio<br>15/20/25 |       | -                | 0.02<br>0.02<br>0.02<br>0.03<br>PHL-42<br>0.02 | 0.18<br>0.17<br>0.14<br>0.14<br>PHL-60(T)<br>0.17(0.02) | 0.97<br>0.67<br>0.65<br>0.60<br>0.58<br>PHL-90(T)<br>0.65(0.17) |
| 1                        | 3<br>4<br>5<br>6/7/8<br>9/10<br>Ratio             |       | -                | 0.02<br>0.02<br>0.02<br>0.03<br>PHL-42         | 0.18<br>0.17<br>0.14<br>0.14<br>PHL-60(T)               | 0.97<br>0.67<br>0.65<br>0.60<br>0.58<br>PHL-90(T)               |

Products due to human error, natural disasters or other factors lead to poor or damaged, will not be covered under warranty.


<sup>\* 1.</sup> Applied to the output shaft center @100rpm.
\* 2. Measured at 3000rpm with no load
% The above figures/specifications are subject to change without prior notice.


# **PLANETARY GEARHEADS**




SESAME | www.sesamemotor.com

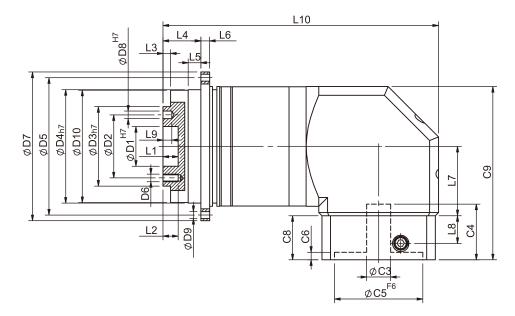


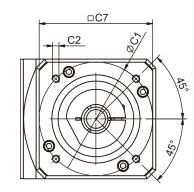




# PHFR Single Stage Dimensions







# Specifications

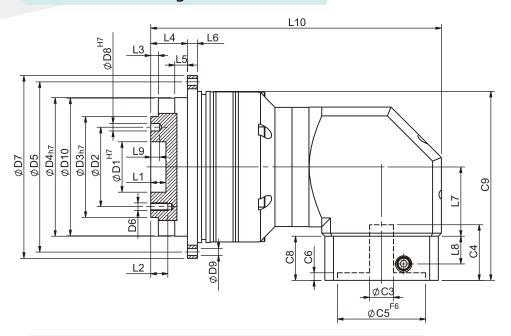
| Dimensions                    | PHFR42 | PHFR60 | PHFR90  | PHFR115 | PHFR142 | PHFR200      |
|-------------------------------|--------|--------|---------|---------|---------|--------------|
| D1 H7                         | -      | -      | 31.5    | -       | -       | -            |
| D2                            | -      | -      | 50      | -       | -       | -            |
| D3 h7                         | -      | -      | 63      | _       | -       | _            |
| D4 h7                         | -      | -      | 90      | -       | -       | -            |
| D5                            | -      | -      | 109     | -       | -       | -            |
| D6                            | -      | -      | M6x1.0P | -       | -       | <del>-</del> |
| D7                            | -      | -      | 118     | -       | -       | -            |
| D8 H7                         | -      | -      | 6       | -       | -       | -            |
| D9                            | -      | -      | 5.5     | -       | -       | -            |
| D10                           | -      | -      | 89.2    | -       | -       | -            |
| L1                            | -      | -      | 12      | -       | -       | -            |
| L2                            | -      | -      | 12      | -       | -       | -            |
| L3                            | -      | -      | 6       | -       | -       | -            |
| L4                            | -      | -      | 30      | -       | -       | -            |
| L5                            | -      | -      | 10      | -       | -       | -            |
| L6                            | -      | -      | 7       | -       | -       | -            |
| L7                            | -      | -      | 55      | -       | -       | _            |
| L8                            | -      | -      | 22      | -       | -       | -            |
| L9                            | -      | -      | 7       | -       | -       | -            |
| L10                           | -      | -      | 173.6   | -       | -       | -            |
| C1 <sup>2</sup>               | -      | -      | 90      | -       | -       | -            |
| C2 <sup>2</sup>               | -      | -      | M6x1.0P | -       | -       | -            |
| C3 <sup>2</sup>               | -      | -      | ≦19/≦24 | -       | -       | -            |
| C4 <sup>2</sup>               | -      | -      | 44      | -       | -       | -            |
| C5 <sup>2</sup> <sub>F6</sub> | -      | -      | 70      | -       | -       | -            |
| C6 <sup>2</sup>               | -      | -      | 5       | -       | -       | -            |
| C7 <sup>2</sup>               | -      | -      | 90      | -       | -       | -            |
| C8 <sup>2</sup>               | -      | -      | 35      | -       | -       | -            |
| C9 <sup>2</sup>               | -      | -      | 137.5   | -       | -       | -            |

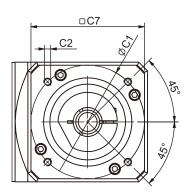
 $<sup>\</sup>bigstar \ \text{C1}{\sim}\text{C9} \ \text{are motor specific dimensions(metric std shown ), Size may vary according to motor flange.}$ 

<sup>★</sup> Specification subject to change without notice.






# Specifications


| Dimensions         | PHFR42 | PHFR60 | PHFR90  | PHFR115 | PHFR142 | PHFR200 |
|--------------------|--------|--------|---------|---------|---------|---------|
| D1 H7              | -      | -      | 31.5    | -       | -       | -       |
| D2                 | -      | -      | 50      | -       | -       | -       |
| D3 h7              | -      | -      | 63      | -       | -       | _       |
| D4 h7              | -      | -      | 90      | -       | -       | -       |
| D5                 | -      | -      | 109     | -       | -       | -       |
| D6                 | -      | -      | M6x1.0P | -       | -       | -       |
| D7                 | -      | -      | 118     | -       | -       | -       |
| D8 H7              | -      | -      | 6       | -       | -       | -       |
| D9                 | -      | -      | 5.5     | -       | -       | -       |
| D10                | -      | -      | 89.2    | -       | -       | -       |
| L1                 | -      | -      | 12      | -       | -       | -       |
| L2                 | -      | -      | 12      | -       | -       | -       |
| L3                 | _      | _      | 6       | -       | -       | -       |
| L4                 | -      | -      | 30      | -       | -       | -       |
| L5                 | -      | -      | 10      | -       | -       | -       |
| L6                 | -      | -      | 7       | -       | -       | -       |
| L7                 | -      | -      | 55      | -       | -       | -       |
| L8                 | -      | -      | 22      | -       | -       | -       |
| L9                 | -      | -      | 7       | -       | -       | -       |
| L10                | -      | -      | 218.6   | -       | -       | -       |
| C1 <sup>2</sup>    | -      | -      | 90      | -       | -       | -       |
| C2 <sup>2</sup>    | -      | -      | M6x1.0P | -       | -       | -       |
| C3 <sup>2</sup>    | -      | -      | ≦19/≦24 | -       | -       | -       |
| C4 <sup>2</sup>    | -      | -      | 44      | -       | -       | -       |
| C5 <sup>2</sup> F6 | -      | -      | 70      | -       | -       | _       |
| C6 <sup>2</sup>    | -      | -      | 5       | -       | -       | -       |
| C7 <sup>2</sup>    | -      | -      | 90      | -       | -       | -       |
| C8 <sup>2</sup>    | -      | -      | 35      | -       | -       | -       |
| C9 <sup>2</sup>    | -      | -      | 137.5   | -       | -       | -       |

<sup>★</sup> C1~C9 are motor specific dimensions(metric std shown ),Size may vary according to motor flange.

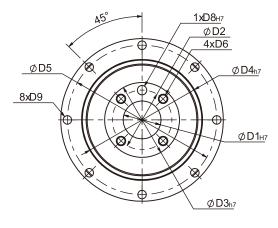
<sup>★</sup> Specification subject to change without notice.

# PHFR Double Stage Dimensions-2

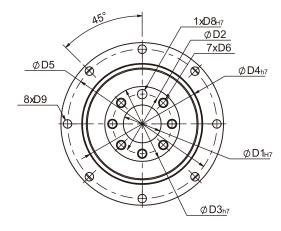




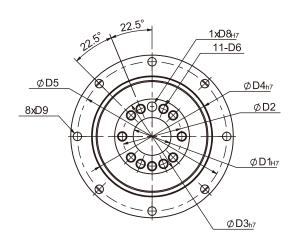
# Specifications


| Dimensions         | PHFR60T | PHFR90T | PHFR115T | PHFR142T | PHFR200T | PHFR255T |
|--------------------|---------|---------|----------|----------|----------|----------|
| D1 H7              | -       | -       | 40       | -        | -        | -        |
| D2                 | -       | -       | 63       | -        | -        | -        |
| D3 h7              | -       | -       | 80       | -        | -        | -        |
| D4 h7              | -       | -       | 110      | -        | -        | -        |
| D5                 | -       | -       | 135      | -        | -        | -        |
| D6                 | -       | -       | M6x1.0P  | -        | -        | -        |
| D7                 | -       | -       | 145      | -        | -        | -        |
| D8 H7              | -       | -       | 6        | -        | -        | -        |
| D9                 | -       | -       | 5.5      | -        | -        | -        |
| D10                | -       | -       | 109.2    | -        | -        | -        |
| L1                 | -       | -       | 12       | -        | -        | -        |
| L2                 | -       | -       | 13.5     | -        | -        | -        |
| L3                 | -       | -       | 6        | -        | -        | -        |
| L4                 | -       | -       | 29       | -        | -        | -        |
| L5                 | -       | -       | 10       | -        | -        | -        |
| L6                 | -       | -       | 8        | -        | -        | -        |
| L7                 | -       | -       | 55       | -        | -        | -        |
| L8                 | -       | -       | 22       | -        | -        | -        |
| L9                 | -       | -       | 7        | -        | -        | -        |
| L10                | -       | -       | 230.6    | -        | -        | -        |
| C1 <sup>2</sup>    | -       | -       | 90       | -        | -        | -        |
| C2 <sup>2</sup>    | -       | -       | M6x1.0P  | -        | -        | -        |
| C3 <sup>2</sup>    | -       | -       | ≦19/≦24  | -        | _        | -        |
| C4 <sup>2</sup>    | -       | -       | 44       | -        | -        | -        |
| C5 <sup>2</sup> F6 | -       | -       | 70       | -        |          | _        |
| C6 <sup>2</sup>    | -       | -       | 5        | -        | -        | -        |
| C7 <sup>2</sup>    | -       | -       | 90       | -        | -        | -        |
| C8 <sup>2</sup>    | -       | -       | 35       | -        | -        | -        |
| C9 <sup>2</sup>    | -       | -       | 150      | -        | -        | -        |

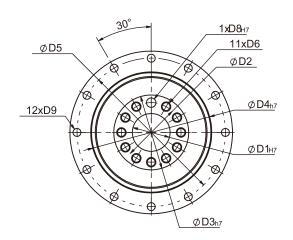
 $<sup>\</sup>star$  C1~C9 are motor specific dimensions(metric std shown ),Size may vary according to motor flange.


 $<sup>\</sup>star$  Specification subject to change without notice.

## PHFR Flange Dimensions


### PHFR42




## PHFR60 PHFR90



## **PHFR115**



### PHFR142 PHFR200



## Specifications

| Dimensions | PHFR42  | PHFR60  | PHFR90  | PHFR115 | PHFR142  | PHFR200  |
|------------|---------|---------|---------|---------|----------|----------|
| D1 H7      | 12      | 20      | 31.5    | 40      | 50       | 80       |
| D2         | 20      | 31.5    | 50      | 63      | 80       | 125      |
| D3 h7      | 28      | 40      | 63 80   |         | 100      | 160      |
| D4 h7      | 47      | 64      | 90      | 110     | 140      | 200      |
| D5         | 67      | 79      | 109     | 135     | 168      | 233      |
| D6         | M3x0.5P | M5x0.8P | M6x1.0P | M6x1.0P | M8x1.25P | M10x1.5P |
| D8 H7      | 3       | 5       | 6       | 6       | 8        | 10       |
| D9         | 3.4     | 4.5     | 5.5     | 5.5     | 6.6      | 9        |

<sup>★</sup> Specification subject to change without notice.

# PHFR Specifications Table

| Specifications            |                  | Stage | Ratio           | PHFR-42    | PHFR-60        | PHFR-90        | PHFR-115       | PHFR-142     | PHFR-200   | PHFR-255   |
|---------------------------|------------------|-------|-----------------|------------|----------------|----------------|----------------|--------------|------------|------------|
|                           |                  |       | 3               | -          | 40             | 105            | 180            | 310          | 580        | 1100       |
|                           |                  |       | 4               | 16         | 43             | 110            | 240            | 450          | 1100       | 1700       |
|                           |                  | 1     | 5               | 17         | 50             | 130            | 290            | 530          | 1200       | 1900       |
|                           |                  |       | 7               | 14         | 44             | 125            | 270            | 450          | 1100       | 1650       |
|                           |                  |       | 10              | 11         | 37             | 95             | 220            | 360          | 900        | 1450       |
|                           |                  |       | 14              | 14         | 44             | 125            | 270            | 450          | 1100       | 1650       |
|                           |                  |       | 20              | 11         | 37             | 95             | 220            | 360          | 900        | 1450       |
|                           |                  | Stage | Ratio           | PHFR-42    | PHFR-60 (T)    | PHFR-90(T)     | PHFR-115T      | PHFR-142T    | PHFR-200T  | PHFR-255T  |
| Name in al Outrout Taxous | NI               |       | 15              | -          | 40             | 105            | 180            | 310          | 580        | 1100       |
| Nominal Output Torque     | N • m            |       | 20              | 16         | 43             | 110            | 240            | 450          | 1100       | 1700       |
|                           |                  |       | 25              | 17         | 50             | 130            | 290            | 530          | 1200       | 1900       |
|                           |                  | 2     | 30              | 17         | 50             | 130            | 290            | 530          | 1200       | 1900       |
|                           |                  |       | 35              | 17         | 50             | 130            | 290            | 530          | 1200       | 1900       |
|                           |                  |       | 40              | 17         | 50             | 130            | 290            | 530          | 1200       | 1900       |
|                           |                  |       | 50              | 17         | 50             | 130            | 290            | 530          | 1200       | 1900       |
|                           |                  |       | 70              | 14         | 44             | 125            | 270            | 450          | 1100       | 1650       |
|                           |                  |       | 100             | 11         | 37             | 95             | 220            | 360          | 900        | 1450       |
|                           |                  |       | 140             | 14         | 44             | 125            | 270            | 450          | 1100       | 1650       |
|                           |                  |       | 200             | 11         | 37             | 95             | 220            | 360          | 900        | 1450       |
| - 0. T                    |                  |       |                 | I          |                | 0 times of No  | minal Outpu    | t Torque     |            |            |
| Emergency Stop Torque     | N • m            |       |                 | (*         | Max. Outpu     | t Torque T2B   | =60% of Eme    | rgency Stop  | Torque)    |            |
| Nominal Input Speed       | rpm              | 1,2   | 3-200           | 5000       | 5000           | 4000           | 4000           | 3000         | 3000       | 2000       |
| Max. Input Speed          | rpm              | 1,2   | 3-200           | 10000      | 10000          | 8000           | 8000           | 6000         | 6000       | 4000       |
| Micro Backlash P0         | arcmin           | 1     | 3-20            | -          | -              | ≦ 3            | ≦ 2            | ≦2           | ≦ 2        | ≦ 2        |
| IVIICIO Backlasii i o     | arcilliii        | 2     | 15-200          | -          | -              | ≦ 5            | ≦4             | ≦4           | ≦4         | ≦4         |
| Precision Backlash P1     | arcmin           | 1     | 3-20            | ≦ 5        | ≦ 5            | ≦ 5            | ≦4             | ≦4           | ≦4         | ≦4         |
|                           |                  | 2     | 15-200          | ≦7         | ≦7             | ≦7             | <u>≦7</u>      | ≦7           | ≦7         | ≦7         |
| Standard Backlash P2      | arcmin           | 1 2   | 3-20<br>15-200  | ≦ 7<br>≦ 9 | ≦ 7<br>≦ 9     | ≦ 7<br>≦ 9     | ≦ 6<br>≦ 9     | ≦ 6<br>≦ 9   | ≦ 6<br>≦ 9 | ≦ 6<br>≦ 9 |
| Torsional Rigidity        | N • m<br>/arcmin | 1,2   | 3-100           | 6          | 12             | 28             | 75             | 130          | 400        | 920        |
| Max. Bending Moment       | N • m            | 1,2   | 3-100           | 43         | 125            | 260            | 503            | 1140         | 3430       | 6600       |
| Max. Axial Load           | N                | 1,2   | 3-100           | 1015       | 1340           | 2450           | 3890           | 8360         | 15500      | 28500      |
| Operating Temp.           | °C               |       | 3-100           |            |                |                | -10 °C ~+90 '  | °C           |            |            |
| Service Life              | hr               |       | 3-100           |            |                |                | 00/ Continuc   |              | )          |            |
|                           |                  | 1     | 3-100           |            |                | 20,000 (10,0   | ≥ 95%          | as operation | /          |            |
| Efficiency                | %                | 2     | 12-100          |            |                |                | = 93%<br>≧ 92% |              |            |            |
| Weight                    | kg               | 1 2   | 3-10<br>12-100  | 1.0<br>1.1 | 2.6<br>3.3/2.9 | 6.6<br>8.6/7.0 | 13.5<br>14.8   | 25.1<br>26.7 | 50<br>55   | 85<br>88   |
| Mounting Position         | _                | 1,2   | 3-100           | 1.1        | 3.3/ 2.3       | 0.0/ /.0       | Any direction  |              |            | 00         |
| Noise Level <sup>2</sup>  | dBA/1m           |       | 3-100           | 62         | 64             | 66             | 68             | 70           | 72         | 74         |
|                           |                  | 1,2   | 3-100           | 02         | 04             | 00             | IP65           | 70           | 12         | /4         |
| Protection Class          | -                | 1,2   |                 |            |                |                |                |              |            |            |
| Lubrication               | -                | 1,2   | 3-100           | l<br>Inert | ria(J1)        | Sy             | nthetic Lubri  | Lant         |            |            |
| Stage                     | Ratio            | ur    | nit             | PHFR-42    | PHFR-60        | PHFR-90        | PHFR-115       | PHFR-142     | PHFR-200   | PHFR-255   |
| 3                         | /4/5/7/9         |       |                 | 0.06       | 0.40           | 2.28           | 6.87           | 24.2         | 69.8       | 138.2      |
|                           | 0/14/20          |       |                 | 0.05       | 0.30           | 1.45           | 4.76           | 14.5         | 50.3       | 103.6      |
|                           | Ratio            | Kg ∙  | cm <sup>2</sup> | PHFR-42    | PHFR-60(T)     | PHFR-90(T)     | PHFR-115T      | PHFR-142T    |            | PHFR-255T  |
| 15                        | /20/25/35        |       |                 | 0.06       | 0.40(0.08)     | 2.28(0.72)     | 3.02           | 7.83         | 27.7       | 80.3       |
| 2                         | others           |       |                 | 0.05       | 0.30(0.06)     | 1.45(0.38)     | 1.64           | 5.00         | 15.9       | 55.3       |

\* 1. Applied to the output shaft center @100rpm. \* 2. Measured at 3000rpm with no load

Products due to human error, natural disasters or other factors lead to poor or damaged, will not be covered under warranty.

 $<sup>\</sup>ensuremath{\mathbb{X}}$  The above figures/specifications are subject to change without prior notice.

# **PLANETARY GEARHEADS**



PHFR P

Series

PUR

Series

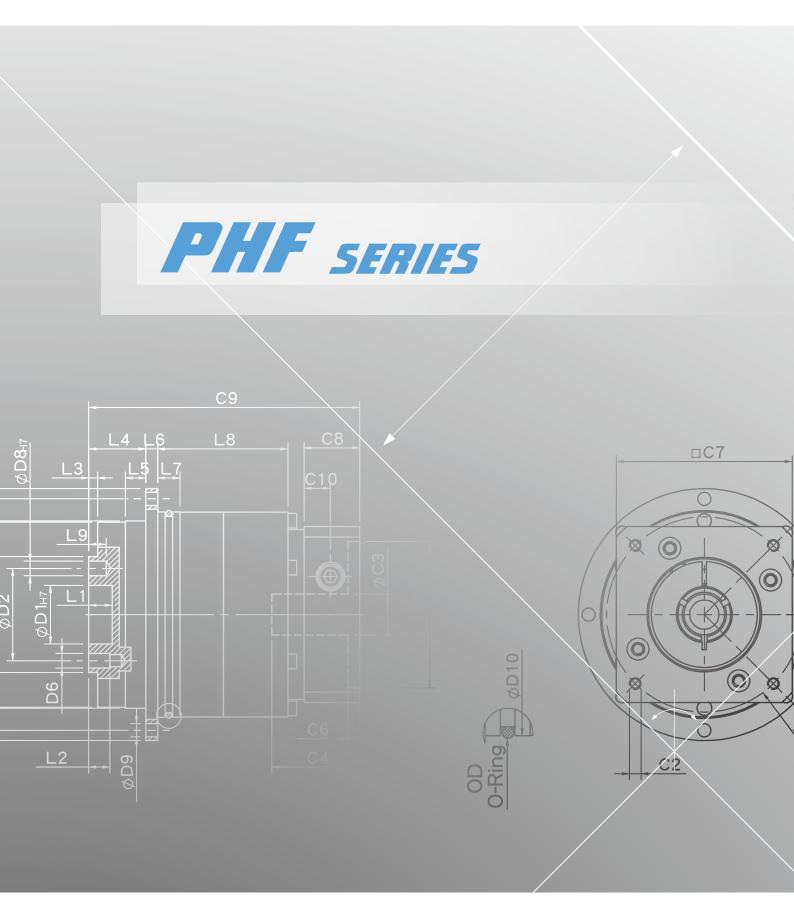
Sie P

GRH

PGFR

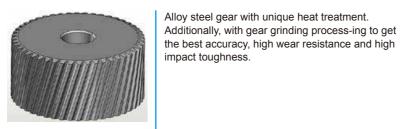
PGF

PEC Series


PEE Serie:

PBC Series

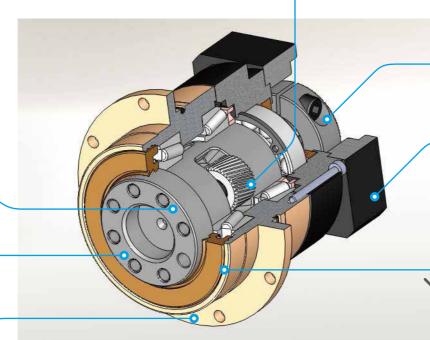
Series Series


PAE





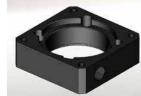



Planet gear transmission interface equipped with needle bearings, full needle roller bearing aligned without retainer achieve maximum exposure but smallest gap tolerances. Enhance over-all gear structure rigid and output torque.

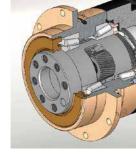


impact toughness.




Planetary arm bracket and output shaft are one-piece constructed, using tapered roller bearings can bear the axial load and radial load that are more than deep groove ball bearings. Setting the bearing apart for larger span to reach the largest torsional rigidity and contribute high axial load and radial load capacity.

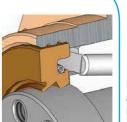



Advanced motor bracket design coupled with the input shaft bushing is easy to mount to any servo or stepper motor.

Input-end and motor shaft are coupled through a dynamic balanced collar clamping mechanism to ensure connection interface concentricity and zero

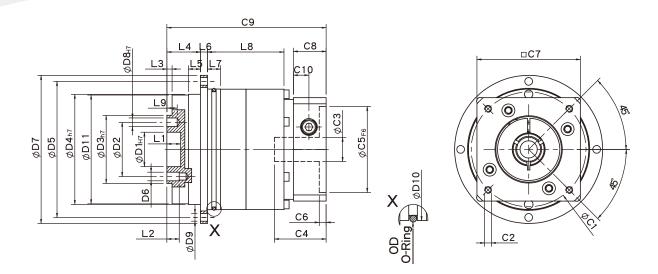
slip power transmission at high speed.




Grinding process to smooth surface of output shaft, and with oil seal to minimum friction coefficient and reducing start up load; result in the best seal-ability and extended lifespan. Hollow output shaft connect perfectly with circular flange drastically reducing the installation space.





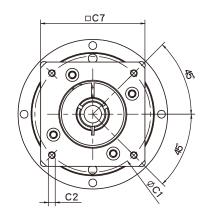

Advanced electroless nickel plating surface treatment resists scratch and corrosion. Suitable for stringent require of high-tech equipment. The gearbox and internal gear ring are one-piece constructed, and then processed with advanced Germany gear shaper machinery for high precision, high torque and abrade consumption.

PHF series overall design suitable for combination operation with servo motor high speed input and achieves maximum torque output. Hollow output shaft connect perfectly with circular flange drastically reducing the installation space. Precision helical gear design and gear processing create a planetary gearhead with low backlash operation, high efficiency, low noise and long lifespan.



High-tech oil seal design on the upper lip guard against dust intruder, lower lip guard against oil leak. Protection grade IP65 safeguards fully avoid leaking problem, and given it maintenance free.

# PHF Single Stage Dimensions



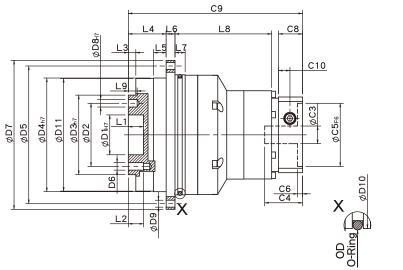

### Specifications

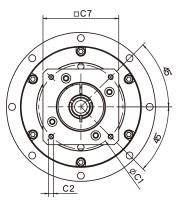
| Dimensions         | PHF42                   | PHF60       | PHF90   | PHF115                   | PHF142                   | PHF200      | PHF255 |
|--------------------|-------------------------|-------------|---------|--------------------------|--------------------------|-------------|--------|
| D1 H7              | 12                      | 20          | 31.5    | 40                       | 50                       | 80          | -      |
| D2                 | 20                      | 31.5        | 50      | 63                       | 80                       | 125         | -      |
| D3 h7              | 28                      | 40          | 63      | 80                       | 100                      | 160         | -      |
| D4 h7              | 47                      | 64          | 90      | 110                      | 140                      | 200         | -      |
| D5                 | 67                      | 79          | 109     | 135                      | 168                      | 233         | -      |
| D6                 | M3x0.5P                 | M5x0.8P     | M6x1.0P | M6x1.0P                  | M8x1.25P                 | M10x1.5P    | -      |
| D7                 | 72                      | 86          | 118     | 145                      | 179                      | 247         | -      |
| D8 H7              | 3                       | 5           | 6       | 6                        | 8                        | 10          | -      |
| D9                 | 3.4                     | 4.5         | 5.5     | 5.5                      | 6.6                      | 9           | -      |
| D10                | 60                      | 70          | 95      | 120                      | 152                      | 212         | -      |
| D11                | 46.2                    | 63.2        | 89.2    | 109.2                    | 139.2                    | 199.2       | -      |
| L1                 | 4                       | 8           | 12      | 12                       | 12                       | 12          | -      |
| L2                 | 6                       | 7.2         | 12      | 13.5                     | 16                       | 22.5        | -      |
| L3                 | 3                       | 3           | 6       | 6                        | 6                        | 8           | -      |
| L4                 | 19.5                    | 19.5        | 30      | 29                       | 38                       | 50          | -      |
| L5                 | 7                       | 7           | 10      | 10                       | 14.6                     | 15          | -      |
| L6                 | 4                       | 4           | 7       | 8                        | 10                       | 12          | _      |
| L7                 | 5                       | 7.7         | 8       | 10                       | 12                       | 17          | -      |
| L8                 | 25                      | 37.5        | 36.5    | 54.5                     | 65                       | 92          | -      |
| L9                 | 4                       | 6           | 7       | 7                        | 7                        | 10          | -      |
| C1 <sup>2</sup>    | 46                      | 70          | 90      | 115                      | 145                      | 200         | -      |
| C2 <sup>2</sup>    | M4x0.7P                 | M5x0.8P     | M6x1.0P | M8x1.25P                 | M8x1.25P                 | M12x1.75P   | -      |
| C3 <sup>2</sup>    | <u>≤</u> 8/ <u>≤</u> 11 | <u>≤</u> 14 | ≦19/≦24 | <u>≤</u> 24/ <u>≤</u> 32 | <u>≤</u> 35/ <u>≤</u> 38 | <u>≤</u> 50 | -      |
| C4 <sup>2</sup>    | 28.1                    | 36.5        | 41.2    | 51.1                     | 69.7                     | 81          | -      |
| C5 <sup>2</sup> F6 | 30                      | 50          | 70      | 95                       | 110                      | 114.3       | -      |
| C6 <sup>2</sup>    | 4                       | 4           | 6.7     | 6                        | 8.5                      | 6           | -      |
| C7 <sup>2</sup>    | 42                      | 60          | 90      | 115                      | 140                      | 182         | -      |
| C8 <sup>2</sup>    | 16.5                    | 19          | 25.5    | 30                       | 38                       | 40          | -      |
| C9 <sup>2</sup>    | 74.8                    | 92.5        | 107     | 131.5                    | 171.5                    | 215         | -      |
| C10 <sup>2</sup>   | 7.4                     | 9           | 11.3    | 13.9                     | 17.8                     | 21          | -      |
| OD                 | 56x2                    | 66x2        | 90x3    | 110x3                    | 145x3                    | 200x5       | -      |

 $<sup>\</sup>star$  C1~C9 are motor specific dimensions(metric std shown ),Size may vary according to motor flange.

 $<sup>\</sup>bigstar$  Specification subject to change without notice.




# Specifications


| Dimensions         | PHF42   | PHF60   | PHF90   | PHF115 | PHF142 | PHF200 | PHF255 |
|--------------------|---------|---------|---------|--------|--------|--------|--------|
| D1 H7              | 12      | 20      | 31.5    | -      | -      | -      | -      |
| D2                 | 20      | 31.5    | 50      | -      | -      | -      | -      |
| D3 h7              | 28      | 40      | 63      | -      | -      | -      | -      |
| D4 h7              | 47      | 64      | 90      | -      | -      | -      | -      |
| D5                 | 67      | 79      | 109     | -      | -      | -      | -      |
| D6                 | M3x0.5P | M5x0.8P | M6x1.0P | -      | -      | -      | -      |
| D7                 | 72      | 86      | 118     | -      | -      | -      | -      |
| D8 H7              | 3       | 5       | 6       | -      | -      | -      | -      |
| D9                 | 3.4     | 4.5     | 5.5     | -      | -      | -      | -      |
| D10                | 60      | 70      | 95      | -      | -      | -      | -      |
| D11                | 46.2    | 63.2    | 89.2    | -      | -      | -      | -      |
| L1                 | 4       | 8       | 12      | -      | -      | -      | -      |
| L2                 | 6       | 7.2     | 12      | -      | -      | -      | -      |
| L3                 | 3       | 3       | 6       | -      | -      | -      | -      |
| L4                 | 19.5    | 19.5    | 30      | -      | -      | -      | -      |
| L5                 | 7       | 7       | 10      | -      | -      | -      | -      |
| L6                 | 4       | 4       | 7       | -      | -      | -      | -      |
| L7                 | 5       | 7.7     | 8       | -      | -      | -      | -      |
| L8                 | 54.5    | 72.5    | 81.5    | -      | -      | -      | -      |
| L9                 | 4       | 6       | 7       | -      | -      | -      | -      |
| C1 <sup>2</sup>    | 46      | 70      | 90      | -      | -      | -      | -      |
| C2 <sup>2</sup>    | M4x0.7P | M5x0.8P | M6x1.0P | -      | -      | -      | -      |
| C3 <sup>2</sup>    | ≦8/≦11  | ≦14     | ≦19/≦24 | -      | -      | -      | -      |
| C4 <sup>2</sup>    | 28.1    | 36.4    | 41.2    | -      | -      | -      | -      |
| C5 <sup>2</sup> F6 | 30      | 50      | 70      | -      | -      | -      | -      |
| C6 <sup>2</sup>    | 4       | 4       | 6.7     | -      | -      | -      | -      |
| C7 <sup>2</sup>    | 42      | 60      | 90      | -      | -      | -      | -      |
| C8 <sup>2</sup>    | 16.5    | 19      | 25.5    | -      | -      | -      | -      |
| C9 <sup>2</sup>    | 102.5   | 127.5   | 151.1   | -      | -      | -      | -      |
| C10 <sup>2</sup>   | 7.4     | 9       | 11.3    | -      | -      | -      | -      |
| OD                 | 56x2    | 66x2    | 90x3    | -      | -      | -      | -      |

<sup>★</sup> C1~C9 are motor specific dimensions(metric std shown ),Size may vary according to motor flange.

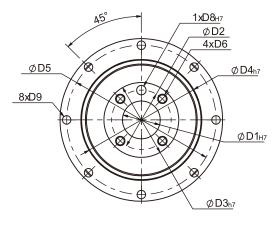
 $<sup>\</sup>star$  Specification subject to change without notice.

# PHF Double Stage Dimensions-2

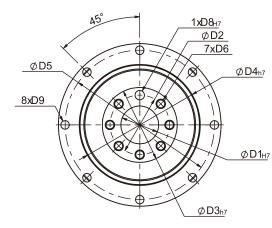




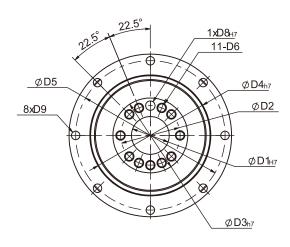
### Specifications


| Dimensions                    | PHF60T  | PHF90T      | PHF115T | PHF142T                  | PHF200T  | PHF255T |
|-------------------------------|---------|-------------|---------|--------------------------|----------|---------|
| D1 H7                         | 20      | 31.5        | 40      | 50                       | 80       | -       |
| D2                            | 31.5    | 50          | 63      | 80                       | 125      | -       |
| D3 h7                         | 40      | 63          | 80      | 100                      | 160      | -       |
| D4 h7                         | 64      | 90          | 110     | 140                      | 200      | -       |
| D5                            | 79      | 109         | 135     | 168                      | 233      | -       |
| D6                            | M5x0.8P | M6x1.0P     | M6x1.0P | M8x1.25P                 | M10x1.5P | -       |
| D7                            | 86      | 118         | 145     | 179                      | 247      | -       |
| D8 H7                         | 5       | 6           | 6       | 8                        | 10       | -       |
| D9                            | 4.5     | 5.5         | 5.5     | 6.6                      | 9        | -       |
| D10                           | 70      | 95          | 120     | 152                      | 212      | -       |
| D11                           | 63.2    | 89.2        | 109.2   | 139.2                    | 199.2    | -       |
| L1                            | 8       | 12          | 12      | 12                       | 12       | -       |
| L2                            | 7.2     | 12          | 13.5    | 16                       | 22.5     | -       |
| L3                            | 3       | 6           | 6       | 6                        | 8        | -       |
| L4                            | 19.5    | 30          | 29      | 38                       | 50       | -       |
| L5                            | 7       | 10          | 10      | 14.6                     | 15       | -       |
| L6                            | 4       | 7           | 8       | 10                       | 12       | -       |
| L7                            | 7.7     | 8           | 10      | 12                       | 17       | -       |
| L8                            | 65.2    | 69.5        | 93.5    | 110                      | 161.7    | -       |
| L9                            | 6       | 7           | 7       | 7                        | 10       | -       |
| C1 <sup>2</sup>               | 46      | 70          | 90      | 115                      | 145      | -       |
| C2 <sup>2</sup>               | M4x0.7P | M5x0.8P     | M6x1.0P | M8x1.25P                 | M8x1.25P | -       |
| C3 <sup>2</sup>               | ≦8/≦11  | <u>≤</u> 14 | ≦19/≦24 | <u>≤</u> 24/ <u>≤</u> 32 | ≦35/≦38  | -       |
| C4 <sup>2</sup>               | 28.1    | 36.5        | 41.2    | 51.1                     | 69.7     | -       |
| C5 <sup>2</sup> <sub>F6</sub> | 30      | 50          | 70      | 95                       | 110      | -       |
| C6 <sup>2</sup>               | 4       | 4           | 6.7     | 6                        | 8.5      | -       |
| C7 <sup>2</sup>               | 42      | 60          | 90      | 115                      | 140      | -       |
| C8 <sup>2</sup>               | 16.5    | 19          | 25.5    | 30                       | 38       | -       |
| C9 <sup>2</sup>               | 113.2   | 138         | 163.1   | 198                      | 281      | -       |
| C10 <sup>2</sup>              | 7.4     | 9           | 11.3    | 13.9                     | 17.8     | -       |
| OD                            | 66x2    | 90x3        | 110x3   | 145x3                    | 200x5    | -       |

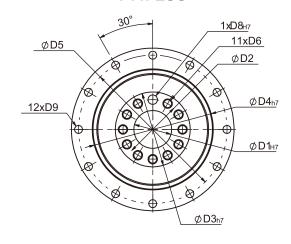
 $<sup>\</sup>star$  C1~C9 are motor specific dimensions(metric std shown ), Size may vary according to motor flange.


 $<sup>\</sup>star$  Specification subject to change without notice.

### PHF Flange Dimensions


### PHF42




### PHF60 PHF90



### **PHF115**



### PHF142 PHF200 PHF255



### Specifications

| Dimensions | PHF42   | PHF60   | PHF90   | PHF115  | PHF142   |
|------------|---------|---------|---------|---------|----------|
| D1 H7      | 12      | 20      | 31.5    | 40      | 50       |
| D2         | 20      | 31.5    | 50      | 63      | 80       |
| D3 h7      | 28      | 40      | 63      | 80      | 100      |
| D4 h7      | 47      | 64      | 90      | 110     | 140      |
| D5         | 67      | 79      | 109     | 135     | 168      |
| D6         | M3x0.5P | M5x0.8P | M6x1.0P | M6x1.0P | M8x1.25P |
| D8 H7      | 3       | 5       | 6       | 6       | 8        |
| D9         | 3.4     | 4.5     | 5.5     | 5.5     | 6.6      |

<sup>★</sup> Specification subject to change without notice.

# PHF Specifications Table

| Specif              | fications |              | Stage | Ratio           | PHF-42   | PHF-60     | PHF-90       | PHF-115        | PHF-142       | PHF-200  | PHF-255        |
|---------------------|-----------|--------------|-------|-----------------|----------|------------|--------------|----------------|---------------|----------|----------------|
|                     |           |              |       | 3               | -        | 40         | 105          | 180            | 310           | 760      | 1240           |
|                     |           |              |       | 4               | 16       | 43         | 110          | 240            | 450           | 950      | 1600           |
|                     |           |              | 1     | 5               | 17       | 50         | 130          | 290            | 530           | 1260     | 2050           |
|                     |           |              |       | 7               | 14       | 44         | 125          | 270            | 450           | 1150     | 1850           |
|                     |           |              |       | 10              | 11       | 37         | 95           | 220            | 360           | 960      | 1500           |
|                     |           |              | Stage | Ratio           | PHF-42   | PHF-60 (T) | PHF-90(T)    | PHF-115T       | PHF-142T      | PHF-200T | PHF-255T       |
|                     |           |              |       | 15              | -        | 40         | 105          | 180            | 310           | 760      | 1240           |
| Nominal Output T    | orque     | N • m        |       | 20              | 16       | 43         | 110          | 240            | 450           | 950      | 1600           |
|                     |           |              |       | 25              | 17       | 50         | 130          | 290            | 530           | 1260     | 2050           |
|                     |           |              |       | 30              | 17       | 50         | 130          | 290            | 530           | 1260     | 2050           |
|                     |           |              | 2     | 35              | 17       | 50         | 130          | 290            | 530           | 1260     | 2050           |
|                     |           |              | _     | 40              | 17       | 50         | 130          | 290            | 530           | 1260     | 2050           |
|                     |           |              |       | 50              | 17       | 50         | 130          | 290            | 530           | 1260     | 2050           |
|                     |           |              |       | 70              | 14       | 44         | 125          | 270            | 450           | 1150     | 1850           |
|                     |           |              |       | 100             | 11       | 37         | 95           | 220            | 360           | 960      | 1500           |
|                     |           |              |       | 100             | 11       |            |              | ominal Outpu   |               | 900      | 1300           |
| Emergency Stop T    | orque     | N • m        |       |                 | (*       | Max. Outpu | t Torque T2B | =60% of Eme    | ergency Stop  | Torque)  |                |
| Nominal Input S     | peed      | rpm          | 1,2   | 3-100           | 5000     | 5000       | 4000         | 4000           | 3000          | 3000     | 2000           |
| Max. Input Spe      | eed       | rpm          | 1,2   | 3-100           | 10000    | 10000      | 8000         | 8000           | 6000          | 5000     | 4000           |
| Micro Backlash      | DΩ        | arcmin       | 1     | 3-10            | ≦2       | ≦ 2        | ≦2           | ≦1             | ≦1            | ≦1       | ≦1             |
| IVIICIO Backiasii   |           | arcillili    | 2     | 12-100          | ≦4       | ≦4         | ≦4           | ≦3             | ≦3            | ≦3       | ≦3             |
| Precision Backlas   | sh P1     | arcmin       | 1     | 3-10            | ≦ 4      | ≦ 4        | ≦ 4          | ≦3             | ≦ 3           | ≦3       | ≦ 3            |
| T TOOLSTOTT BUCKING |           | ureriiii     | 2     | 12-100          | ≦6       | ≦6         | ≦6           | ≦ 5            | ≦ 5           | ≦ 5      | ≦ 5            |
| Standard Backlas    | sh P2     | arcmin       | 1     | 3-10            | ≦6       | ≦6         | ≦6           | ≦ 5            | ≦5            | ≦5       | ≦ 5            |
|                     |           | N • m        | 2     | 12-100          | ≦8       | ≦8         | ≦8           | ≦7             | ≦7            | ≦7       | ≦7             |
| Torsional Rigio     | dity      | /arcmin      | 1,2   | 3-100           | 6        | 12         | 30           | 80             | 150           | 450      | 1000           |
| Max. Bending Mc     | ment      | N • m        | 1,2   | 3-100           | 43       | 125        | 288          | 503            | 1470          | 2950     | 6500           |
| Max. Axial Loa      |           | N            | 1,2   | 3-100           | 1015     | 1340       | 2868         | 3890           | 9850          | 12560    | 21850          |
| Operating Ten       | np.       | °C           |       | 3-100           |          |            |              | -10 °C ~+90 °  | °C            |          |                |
| Service Life        |           | hr           |       | 3-100           |          |            | 30,000 (15,0 | 000/ Continuc  | ous operation | )        |                |
| Efficiency          |           | %            | 1 2   | 3-10<br>12-100  |          |            |              | ≧ 97%<br>≧ 94% |               |          |                |
|                     |           | -            | 1     | 3-10            | 0.7      | 1.5        | 3.3          | 6.2            | 13.6          | 32.1     | 58.8           |
| Weight              |           | kg           | 2     | 12-100          | 1.1      | 2.3/1.8    | 6.0/4.1      | 8.1            | 17.9          | 38.6     | 72.5           |
| Mounting Posit      | tion      | _            | 1,2   | 3-100           | 1.1      | 2.3/ 1.0   | 0.0/ 4.1     | Any direction  |               | 30.0     | 72.5           |
| Noise Level         |           | dBA/1m       | 1,2   | 3-100           | 56       | 58         | 60           | 63             | 65            | 67       | 70             |
| Protection Cla      |           | GD/ (JIII    | 1,2   | 3-100           | 70       |            |              | IP65           |               |          | , 0            |
| Lubrication         |           | <del>-</del> |       | 3-100           |          |            | <u> </u>     |                | cant          |          |                |
| Lubrication         |           |              | 1,2   | 3-100           | <u>.</u> | · //11     | 5)           | nthetic Lubrio | Lalli         |          |                |
|                     |           |              |       |                 |          | tia(J1)    |              |                |               |          |                |
| Stage               |           |              |       | nit             | PHF-42   | PHF-60     | PHF-90       | PHF-115        | PHF-142       | PHF-200  | PHF-255        |
|                     | 3         |              |       |                 | -        | 0.19       | 0.72         | 2.35           | 9.05          | 29.80    | 72.50          |
|                     |           | 5            |       |                 | 0.02     | 0.18       | 0.67         | 1.66           | 7.17          | 25.86    | 58.21          |
| 1                   |           | 7            |       |                 | 0.02     | 0.17       | 0.65         | 1.50<br>1.45   | 6.52          | 23.63    | 54.36<br>54.12 |
|                     |           | 10           | Ka-   | cm <sup>2</sup> | 0.02     | 0.14       | 0.58         | 1.41           | 6.10          | 22.73    | 53.98          |
| Stage               | F         | Ratio        | Ny •  | CIII            | PHF-42   | PHF-60(T)  | PHF-90(T)    | PHF-115T       | PHF-142T      | PHF-200T | PHF-255T       |
|                     |           | 5/20/25      |       |                 | 0.02     | 0.17(0.02) | 0.65(0.17)   | 0.65           | 1.50          | 6.52     | 23.63          |
| 2                   |           | )/35/40      |       |                 | 0.02     | 0.14(0.02) | 0.60(0.14)   | 0.60           | 1.45          | 6.17     | 22.92          |
|                     |           | /70/100      |       |                 | 0.02     | 0.14(0.02) | 0.58(0.14)   | 0.58           | 1.41          | 6.10     | 22.73          |
|                     |           |              |       |                 |          |            |              |                |               |          |                |

<sup>\* 1.</sup> Applied to the output shaft center @100rpm.
\* 2. Measured at 3000rpm with no load
% The above figures/specifications are subject to change without prior notice.

# **PLANETARY GEARHEADS**



=

PHFR

PHF

PGH

PUR

PUL

PGLH

Series –

. G

PGR

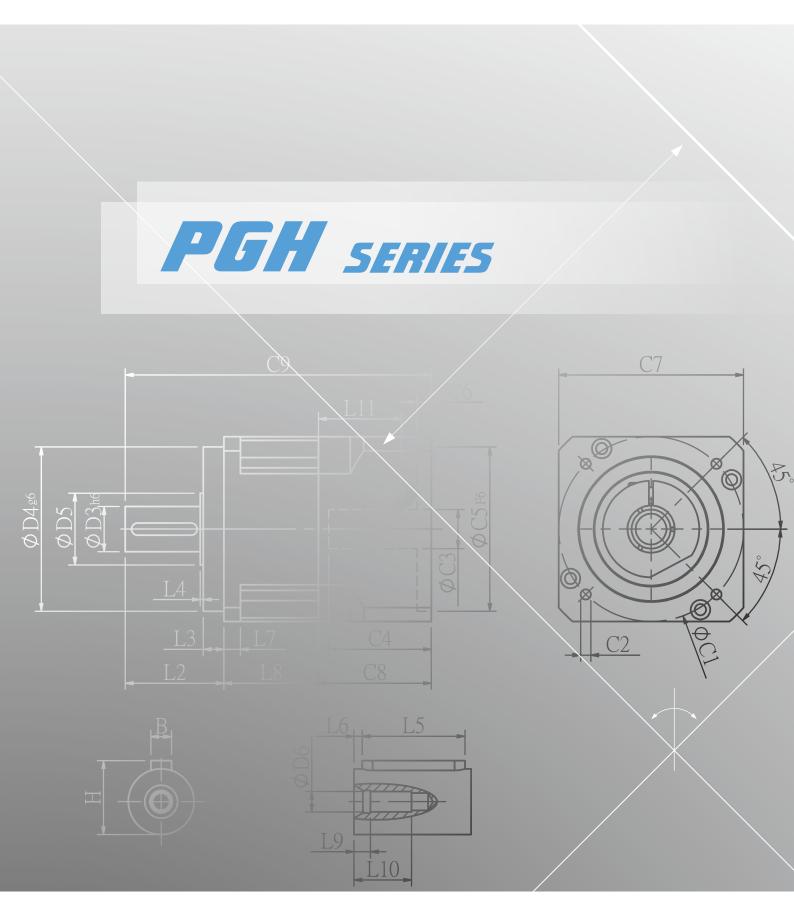
PGR

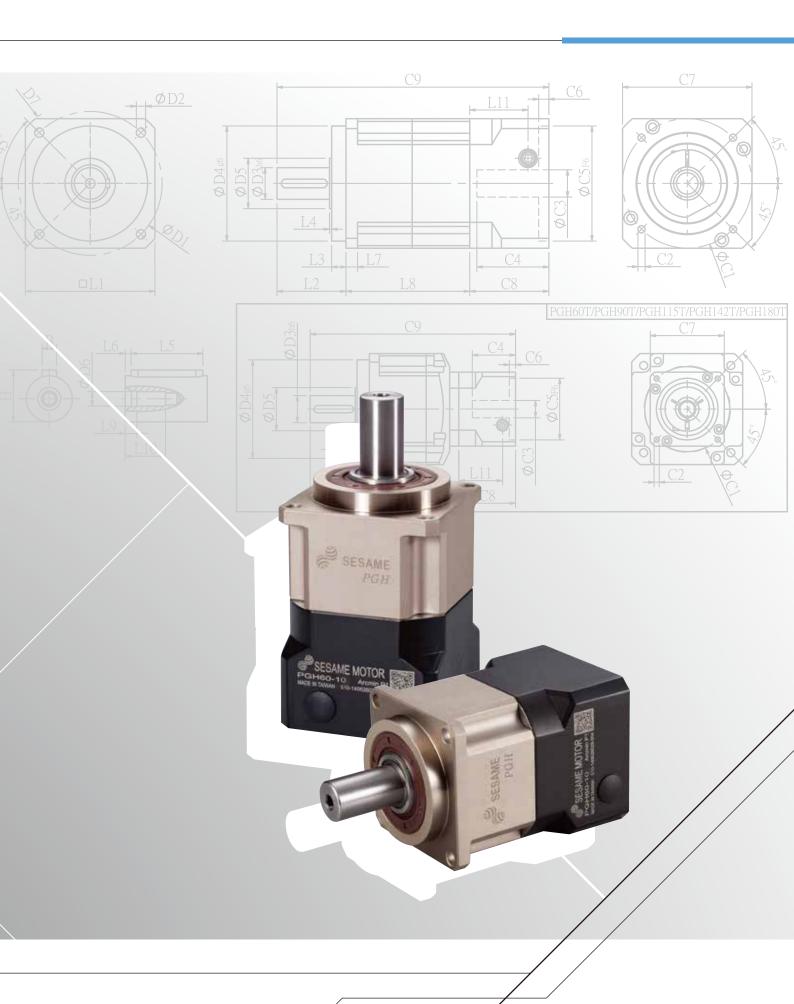
PGFR

PGF

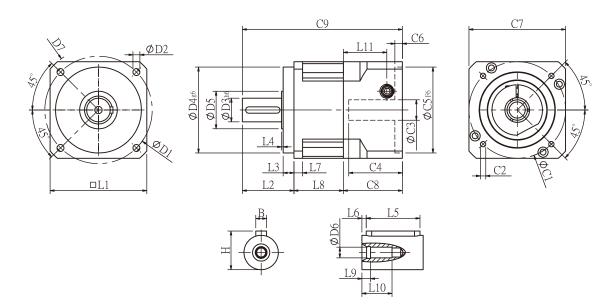
PEL

PEC


S PE


PB(

Serie

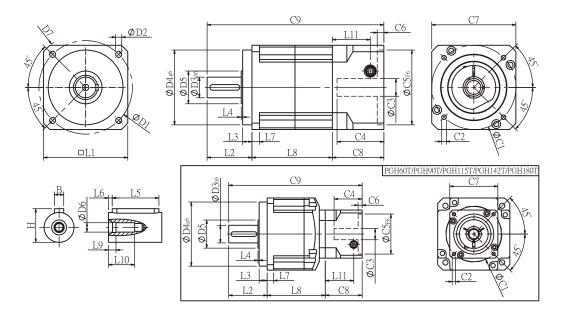

PAE







# PGH Single Stage Dimensions




# Specifications

| Dimensions                    | PGH42   | PGH60   | PGH90    | PGH115                   | PGH142   | PGH180      | PGH220 |
|-------------------------------|---------|---------|----------|--------------------------|----------|-------------|--------|
| D1                            | 50      | 70      | 100      | 130                      | 165      | 215         | -      |
| D2                            | 3.4     | 5.5     | 6.5      | 8.5                      | 10.5     | 13          | -      |
| D3 h6                         | 13      | 16      | 22       | 32                       | 40       | 55          | -      |
| D4 g6                         | 35      | 50      | 80       | 110                      | 130      | 160         | -      |
| D5                            | 15      | 25      | 35       | 45                       | 50       | 70          | -      |
| D6                            | M4x0.7P | M5x0.8P | M8x1.25P | M12x1.75P                | M16x2.0P | M20x2.5P    | -      |
| D7                            | 56      | 80      | 118      | 148                      | 186      | 239         | -      |
| L1                            | 42.6    | 60      | 90       | 115                      | 142      | 182         | -      |
| L2                            | 26      | 37      | 48       | 63                       | 91.5     | 100.5       | -      |
| L3                            | 5.5     | 7       | 10       | 10                       | 10       | 16          | -      |
| L4                            | 1       | 1.5     | 1.5      | 3.5                      | 2.5      | 2.5         | -      |
| L5                            | 15      | 25      | 32       | 40                       | 60       | 70          | -      |
| L6                            | 2       | 2       | 3        | 5                        | 5        | 6           | -      |
| L7                            | 4       | 6       | 8        | 11                       | 16       | 18          | -      |
| L8                            | 28.3    | 37      | 46       | 57                       | 75.5     | 94          | -      |
| L9                            | 4       | 4       | 4.5      | 6                        | 6        | 8           | -      |
| L10                           | 14      | 16.5    | 20.5     | 30                       | 38       | 48          | -      |
| L11                           | 29      | 35.5    | 40.5     | 42                       | 63       | 69.5        | -      |
| C1 <sup>2</sup>               | 46      | 70      | 90       | 115                      | 145      | 200         | -      |
| C2 <sup>2</sup>               | M4x0.7P | M5x0.8P | M6x1.0P  | M8x1.25P                 | M8x1.25P | M12x1.75P   | -      |
| C3 <sup>2</sup>               | ≦8      | ≦14     | ≦19/≦24  | <u>≤</u> 24/ <u>≤</u> 32 | ≦35/≦38  | <u>≤</u> 50 | -      |
| C4 <sup>2</sup>               | 27      | 37      | 47       | 56                       | 66.5     | 82          | -      |
| C5 <sup>2</sup> <sub>F6</sub> | 30      | 50      | 70       | 95                       | 110      | 114.3       | -      |
| C6 <sup>2</sup>               | 4       | 4       | 6        | 10                       | 6        | 13          | -      |
| C7 <sup>2</sup>               | 42.6    | 60      | 90       | 115                      | 140      | 182         | -      |
| C8 <sup>2</sup>               | 38.5    | 46      | 55       | 63                       | 80       | 95          | -      |
| C9 <sup>2</sup>               | 92.8    | 120     | 149      | 183                      | 247      | 289.5       | -      |
| В                             | 5       | 5       | 6        | 10                       | 12       | 16          | -      |
| Н                             | 15      | 18      | 24.5     | 35                       | 43       | 59          | -      |

 $<sup>\</sup>bigstar \ \text{C1} \sim \text{C9} \ \text{are motor specific dimensions (metric std shown ), Size may vary according to motor flange.}$ 

 $<sup>\</sup>star$  Specification subject to change without notice.



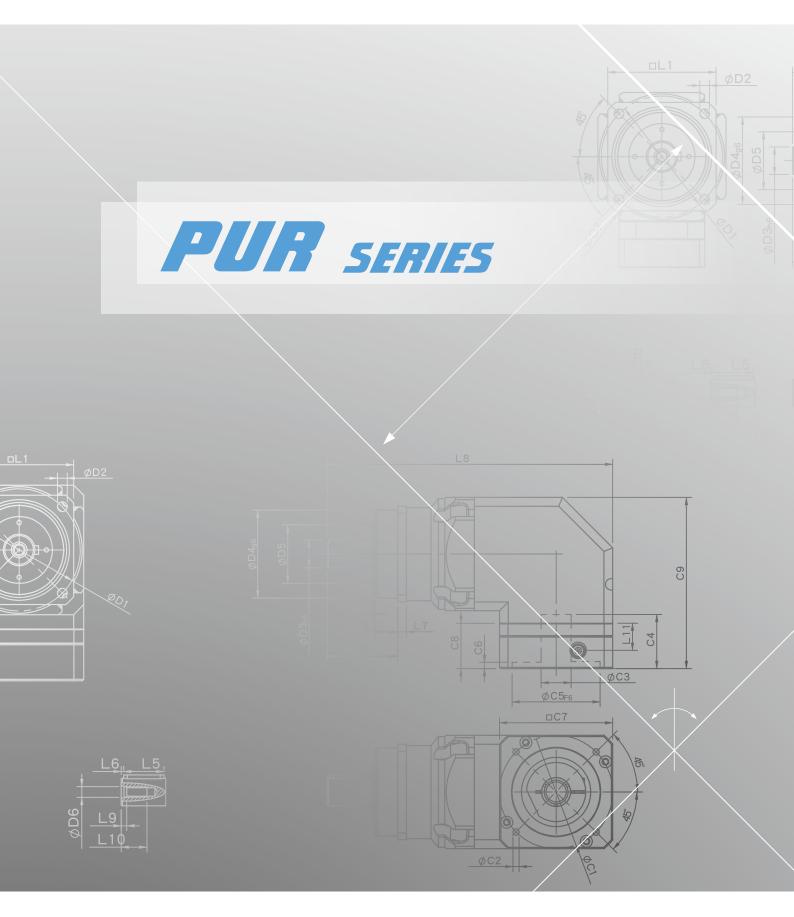
### **Specifications**

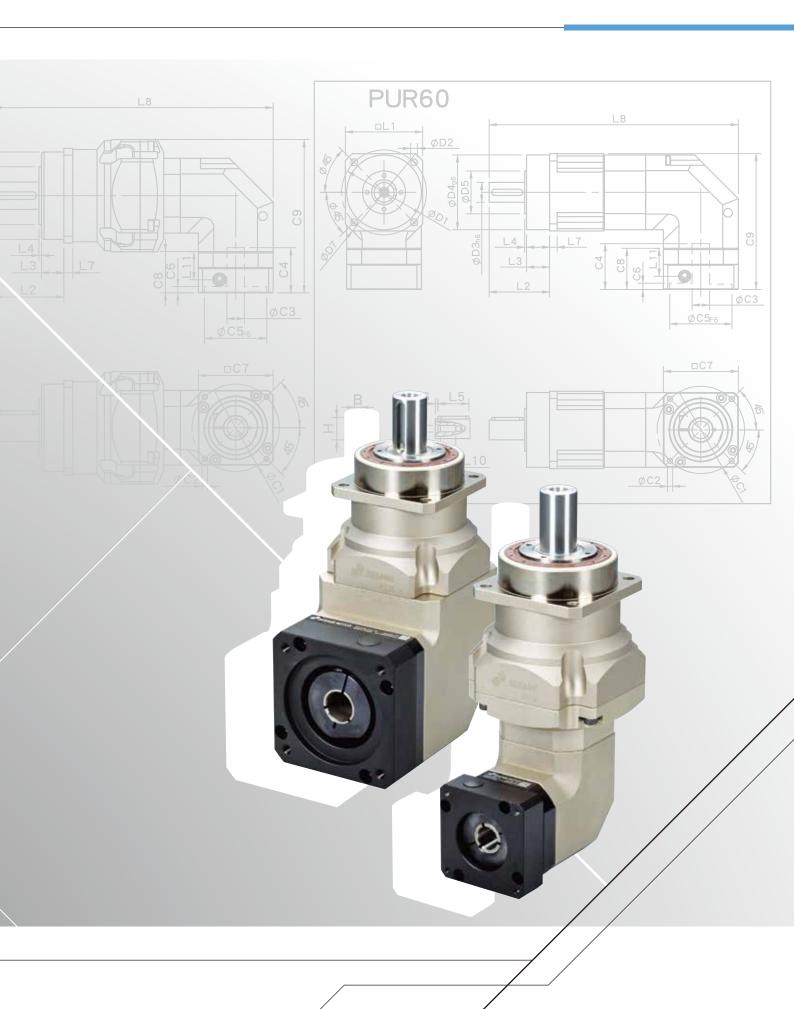
| Dimensions         | PGH42   | PGH60   | PGH60T  | PGH90   | PGH90T      | PGH115T   | PGH142T                  | PGH180T  | PGH220T |
|--------------------|---------|---------|---------|---------|-------------|-----------|--------------------------|----------|---------|
| D1                 | 50      | 7       | 0       | 10      | 00          | 130       | 165                      | 215      | -       |
| D2                 | 3.4     | 5       | 5.5     |         | 6.5         |           | 10.5                     | 13       | -       |
| D3h6               | 13      | 1       | 6       | 2       | 2           | 32        | 40                       | 55       | -       |
| D4g6               | 35      | 5       | 0       | 8       | 0           | 110       | 130                      | 160      | -       |
| D5                 | 15      | 2       | 5       | 3       | 5           | 45        | 50                       | 70       | -       |
| D6                 | M4x0.7P | M5×     | 0.8P    | M8x     | 1.25P       | M12x1.75P | M16x2.0P                 | M20x2.5P | -       |
| D7                 | 56      | 8       | 0       | 1:      | 18          | 148       | 186                      | 239      | -       |
| L1                 | 42.6    | 6       | 0       | 9       | 0           | 115       | 142                      | 182      | -       |
| L2                 | 26      | 3       | 7       | 4       | -8          | 63        | 91.5                     | 100.5    | -       |
| L3                 | 5.5     |         | 7       | 1       | .0          | 10        | 10                       | 16       | -       |
| L4                 | 1       | 1       | .5      | 1       | .5          | 3.5       | 2.5                      | 2.5      | -       |
| L5                 | 15      | 2       | 5       | 3       | 2           | 40        | 60                       | 70       | -       |
| L6                 | 2       | 2       | 2       | 3       |             | 5         | 5                        | 6        | -       |
| L7                 | 4       |         | õ       | 8       |             | 11        | 16                       | 18       | -       |
| L8                 | 55.3    | 70      | 65.5    | 86      | 78.5        | 99.5      | 127.5                    | 166      | -       |
| L9                 | 4       | 4       | 1       | 4       | .5          | 6         | 6                        | 8        | -       |
| L10                | 14      | 16      | 5.5     | 20      | ).5         | 30        | 38                       | 48       | -       |
| L11                | 29      | 35.5    | 29      | 40.5    | 35.5        | 40.5      | 42                       | 63       | -       |
| C1 <sup>2</sup>    | 46      | 70      | 46      | 90      | 70          | 90        | 115                      | 145      | -       |
| C2 <sup>2</sup>    | M4x0.7P | M5x0.8P | M4x0.7P | M6x1.0P | M5x0.8P     | M6x1.0P   | M8x1.25P                 | M8x1.25P | -       |
| C3 <sup>2</sup>    | ≦8      | ≦14     | ≦8      | ≦19/≦24 | <u>≦</u> 14 | ≦19/≦24   | <u>≤</u> 24/ <u>≤</u> 32 | ≦35/≦38  | -       |
| C4 <sup>2</sup>    | 27      | 37      | 27      | 47      | 37          | 47        | 56                       | 66.5     | -       |
| C5 <sup>2</sup> F6 | 30      | 50      | 30      | 70      | 50          | 70        | 95                       | 110      | -       |
| C6 <sup>2</sup>    | 4       | 4       | 4       | 6       | 4           | 6         | 10                       | 6        | -       |
| C7 <sup>2</sup>    | 42.6    | 60      | 42.6    | 90      | 60          | 90        | 115                      | 140      | -       |
| C8 <sup>2</sup>    | 38.5    | 46      | 38.5    | 55      | 46          | 55        | 63                       | 80       | -       |
| C9 <sup>2</sup>    | 119.8   | 153     | 153 141 |         | 172.5       | 217.5     | 282                      | 346.5    | -       |
| В                  | 5       |         | 5       |         | 6           | 10        | 12                       | 16       | -       |
| Н                  | 15      | 1       | 8       | 24      | 1.5         | 35        | 43                       | 59       | -       |

<sup>★</sup> C1~C9 are motor specific dimensions(metric std shown ), Size may vary according to motor flange.

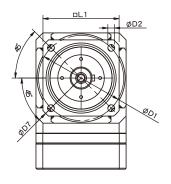
 $<sup>\</sup>bigstar$  Specification subject to change without notice.

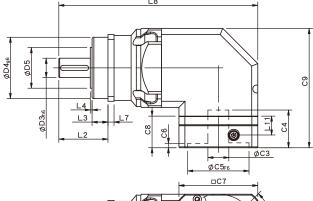
# **PGH Specifications Table**


| Speci            | fications       |                  | Stage | Ratio           | PGH-42     | PGH-60     | PGH-90       | PGH-115        | PGH-142       | PGH-180      | PGH-220      |
|------------------|-----------------|------------------|-------|-----------------|------------|------------|--------------|----------------|---------------|--------------|--------------|
|                  |                 |                  |       | 3               | 19         | 53         | 145          | 290            | 520           | 950          | 1100         |
|                  |                 |                  |       | 4               | 20         | 55         | 150          | 300            | 550           | 1000         | 1700         |
|                  |                 |                  |       | 5               | 17         | 54         | 140          | 290            | 530           | 1050         | 2000         |
|                  |                 |                  |       | 6               | 15         | 46         | 135          | 280            | 490           | 1000         | 1850         |
|                  |                 |                  | 1     | 7 8             | 14<br>12   | 44         | 125<br>110   | 270<br>240     | 450<br>390    | 960<br>900   | 1750<br>1550 |
|                  |                 |                  | _     | 9               | 11         | 37         | 95           | 220            | 360           | 800          | 1500         |
|                  |                 |                  |       | 10              | 11         | 37         | 95           | 220            | 360           | 800          | 1450         |
|                  |                 |                  | Stage | Ratio           | PGH-42     | PGH-60 (T) | PGH-90(T)    | PGH-115T       | PGH-142T      | PGH-180T     | PGH-220T     |
|                  | _               |                  |       | 15              | 19         | 53         | 145          | 290            | 520           | 950          | 2000         |
| Nominal Output 1 | lorque          | N • m            |       | 20              | 20         | 55         | 150          | 300            | 550           | 1000         | 2000         |
|                  |                 |                  |       | 25<br>30        | 17<br>17   | 54<br>54   | 140<br>140   | 290<br>290     | 530<br>530    | 1050<br>1050 | 2000         |
|                  |                 |                  |       | 35              | 17         | 54         | 140          | 290            | 530           | 1050         | 2000         |
|                  |                 |                  |       | 40              | 17         | 54         | 140          | 290            | 530           | 1050         | 2000         |
|                  |                 |                  | 2     | 45              | 17         | 54         | 140          | 290            | 530           | 1050         | 2000         |
|                  |                 |                  |       | 50              | 17         | 54         | 140          | 290            | 530           | 1050         | 2000         |
|                  |                 |                  |       | 60              | 15         | 46         | 135          | 280            | 490           | 1000         | 1850         |
|                  |                 |                  |       | 70              | 14         | 44         | 125          | 270            | 450           | 960          | 1750         |
|                  |                 |                  |       | 90              | 12<br>11   | 41<br>37   | 110<br>95    | 240<br>220     | 390<br>360    | 900          | 1550<br>1500 |
|                  |                 |                  |       | 100             | 11         | 37         | 95           | 220            | 360           | 800          | 1450         |
|                  |                 |                  |       | 100             | 11         |            |              | minal Output   |               | 800          | 1430         |
| Emergency Stop 1 | Torque          | N • m            |       |                 | (*         |            |              | =60% of Eme    |               | Torque)      |              |
| Nominal Input S  | peed            | rpm              | 1,2   | 3-100           | 5000       | 5000       | 4000         | 4000           | 3000          | 3000         | 2000         |
| Max. Input Spe   | eed             | rpm              | 1,2   | 3-100           | 10000      | 10000      | 8000         | 8000           | 6000          | 6000         | 4000         |
| Minne Deal Inch  | . DO            |                  | 1     | 3-10            | ≦2         | ≦ 2        | ≦ 2          | ≦1             | ≦1            | ≦1           | ≦1           |
| Micro Backlash   | 1 P0            | arcmin           | 2     | 12-100          | ≦4         | <b>≦</b> 4 | <b>≦</b> 4   | ≦ 3            | ≦ 3           | ≦3           | ≦ 3          |
|                  |                 |                  | 1     | 3-10            | ≦4         | ≦4         | ≦4           | ≦ 3            | ≦ 3           | ≦ 3          | ≦ 3          |
| Precision Backla | sh P1           | arcmin           | 2     | 12-100          | ≦6         | _ ·<br>≦ 6 | <u>≤</u> 6   | = 5<br>≦ 5     | = 5<br>≦ 5    | = 5<br>≦ 5   | = 5<br>≦ 5   |
|                  |                 |                  | 1     | 3-10            | <u>= 6</u> | <u>6</u>   | <u> </u>     | <u></u> ≤ 5    | <u></u><br>≦5 | <u></u> ≦ 5  | <u>5</u>     |
| Standard Backla  | sh P2           | arcmin           | 2     | 12-100          | ≦8         | _ 0<br>≦ 8 | _ 0<br>≦ 8   | _ 3<br>≦ 7     | _ 3<br>≦ 7    | _ 3<br>≦ 7   | _3<br>≦7     |
| Torsional Rigid  | dity            | N • m<br>/arcmin | 1,2   | 3-100           | 2.5        | 6          | 12           | 23             | 45            | 75           | 220          |
| Max. Radial Lo   | oad             | N                | 1,2   | 3-100           | 760        | 1570       | 2780         | 5340           | 8400          | 13000        | 31810        |
| Max. Axial Lo    | ad              | N                | 1,2   | 3-100           | 410        | 750        | 1870         | 3310           | 4670          | 6460         | 18530        |
| Operating Ter    | nn              | °C               |       | 3-100           |            |            |              | -10 °C ~+90 °  | ·C            |              |              |
| Service Life     |                 | hr               |       | 3-100           |            |            |              |                |               | ١            |              |
| Service Life     | :               | H                | 1     |                 |            |            | 20,000 (10,0 | 00/ Continuo   | us operation  | )            |              |
| Efficiency       |                 | %                | 1     | 3-10            |            |            |              | ≥ 97%          |               |              |              |
|                  |                 |                  | 2     | 12-100          |            |            |              | ≧ 94%          |               |              |              |
| Weight           |                 | kg               | 1     | 3-10            | 0.6        | 1.3        | 3.5          | 7.8            | 16.1          | 27           | 58           |
|                  |                 | 119              | 2     | 12-100          | 0.9        | 2.0/1.6    | 5.6/3.9      | 9.5            | 19            | 34           | 68.5         |
| Mounting Posi    | tion            | -                | 1,2   | 3-100           |            |            |              | Any direction  | 1             |              |              |
| Noise Level      | 2               | dBA/1m           | 1,2   | 3-100           | 56         | 58         | 60           | 63             | 65            | 67           | 70           |
| Protection Cla   | ass             | -                | 1,2   | 3-100           |            |            |              | IP65           |               |              |              |
| Lubrication      |                 | _                | 1,2   | 3-100           |            |            | C.           | nthetic Lubric | ant           |              |              |
| Lubrication      |                 |                  | 1,2   | 7-100           |            | . (14)     | Зу           | THE LUDIN      | Julit         |              |              |
|                  |                 |                  |       |                 |            | ia(J1)     |              |                |               |              |              |
| Stage            | Stage Ratio uni |                  |       | nit             | PGH-42     | PGH-60     | PGH-90       | PGH-115        | PGH-142       | PGH-180      | PGH-220      |
|                  |                 | 3                |       |                 | 0.03       | 0.23       | 0.97         | 2.35           | 10.00         | 30.50        | 79.50        |
|                  |                 | 4                |       |                 | 0.02       | 0.18       | 0.67         | 1.66           | 7.17          | 25.86        | 58.21        |
| 1                | 1 5             |                  |       |                 | 0.02       | 0.17       | 0.65         | 1.50           | 6.52          | 23.63        | 54.36        |
| _                | (               | 6/7/8            |       |                 | 0.02       | 0.14       | 0.60         | 1.45           | 6.17          | 22.92        | 54.12        |
|                  |                 | 9/10             | Kg•   | cm <sup>2</sup> | 0.02       | 0.14       | 0.58         | 1.41           | 6.10          | 22.73        | 53.98        |
| Stage            |                 |                  | Ng •  | Citi            | PGH-42     | PGH-60(T)  | PGH-90(T)    | PGH-115T       | PGH-142T      | PGH-180T     | PGH-220T     |
| Stage            |                 | 5/20/25          |       |                 |            | 0.17(0.02) | 0.65(0.17)   |                |               |              | 23.63        |
|                  |                 | 0/20/25          |       |                 | 0.02       | 0.17(0.02) |              | 0.65           | 1.50          | 6.52         |              |
| 2                |                 |                  |       |                 | 0.02       |            | 0.60(0.14)   | 0.60           | 1.45          | 6.17         | 22.92        |
|                  | 45/50/60/       | /70/80/90/100    |       |                 | 0.02       | 0.14(0.02) | 0.58(0.14)   | 0.58           | 1.41          | 6.10         | 22.73        |


<sup>\* 1.</sup> Applied to the output shaft center @100rpm.
\* 2. Measured at 3000rpm with no load
% The above figures/specifications are subject to change without prior notice.

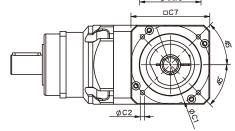
# **PLANETARY GEARHEADS**









# PUR Single Stage Dimensions

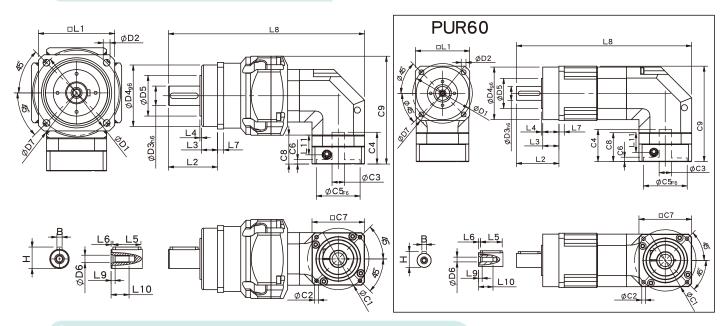











# Specifications

| Dimensions         | PUR60                    | PUR75    | PUR100                   | PUR140 |
|--------------------|--------------------------|----------|--------------------------|--------|
| D1                 | 68                       | 85       | 120                      | -      |
| D2                 | 5.5                      | 6.8      | 9                        | -      |
| D3 h6              | 16                       | 22       | 32                       | -      |
| D4 g6              | 60                       | 70       | 90                       | -      |
| D5                 | 34.6                     | 46.4     | 59.6                     | -      |
| D6                 | M5x0.8P                  | M8x1.25P | M12x1.75P                | -      |
| D7                 | 80                       | 100      | 138                      | -      |
| L1                 | 62                       | 76       | 105                      | -      |
| L2                 | 48.5                     | 56       | 88                       | -      |
| L3                 | 18.5                     | 18       | 28                       | -      |
| L4                 | 1.5                      | 2        | 2                        | -      |
| L5                 | 25                       | 32       | 40                       | -      |
| L6                 | 2                        | 2        | 5                        | -      |
| L7                 | 6                        | 7        | 10                       | -      |
| L8                 | 166.7                    | 227      | 260.5                    | -      |
| L9                 | 4                        | 4.5      | 6                        | -      |
| L10                | 16.5                     | 20.5     | 30                       | -      |
| L11                | 22.5                     | 21.5     | 31.8                     | -      |
| C1 <sup>2</sup>    | 70                       | 90       | 115                      | -      |
| C2 <sup>2</sup>    | M5x0.8P                  | M6x1.0P  | M8x1.25P                 | -      |
| C3 <sup>2</sup>    | <i>≦</i> 14/ <i>≦</i> 19 | ≦14/≦19  | <u>≤</u> 24/ <u>≤</u> 32 | -      |
| C4 <sup>2</sup>    | 34                       | 45       | 53                       | -      |
| C5 <sup>2</sup> F6 | 50                       | 70       | 95                       | -      |
| C6 <sup>2</sup>    | 4                        | 4        | 6                        | -      |
| C7 <sup>2</sup>    | 60                       | 90       | 115                      | -      |
| C8 <sup>2</sup>    | 33                       | 36       | 48                       | -      |
| C9 <sup>2</sup>    | 108.8                    | 136      | 174.5                    | -      |
| В                  | 5                        | 6        | 10                       | -      |
| Н                  | 18                       | 24.5     | 35                       | -      |

 $<sup>\</sup>bigstar \ \text{C1} \sim \text{C9} \ \text{are motor specific dimensions (metric std shown ), Size may vary according to motor flange.}$ 

 $<sup>\</sup>star$  Specification subject to change without notice.

### PUR Double Stage Dimensions



# Specifications

| Dimensions         | PUR60                    | PUR60T  | PUR75T   | PUR100T   |
|--------------------|--------------------------|---------|----------|-----------|
| D1                 | 68                       | 68      | 85       | 120       |
| D2                 | 5.5                      | 5.5     | 6.8      | 9         |
| D3 h6              | 16                       | 16      | 22       | 32        |
| D4 g6              | 60                       | 60      | 70       | 90        |
| D5                 | 34.6                     | 34.6    | 46.4     | 59.6      |
| D6                 | M5x0.8P                  | M5x0.8P | M8x1.25P | M12x1.75P |
| D7                 | 80                       | 80      | 100      | 138       |
| L1                 | 62                       | 62      | 76       | 105       |
| L2                 | 48.5                     | 48.5    | 56       | 88        |
| L3                 | 18.5                     | 18.5    | 18       | 28        |
| L4                 | 1.5                      | 1.5     | 2        | 2         |
| L5                 | 25                       | 25      | 32       | 40        |
| L6                 | 2                        | 2       | 2        | 5         |
| L7                 | 6                        | 6       | 7        | 10        |
| L8                 | 199.7                    | 170.3   | 223.7    | 286.5     |
| L9                 | 4.5                      | 4       | 4.5      | 6         |
| L10                | 20.5                     | 16.5    | 20.5     | 30        |
| L11                | 22.5                     | 15.5    | 22.5     | 21.5      |
| C1 <sup>2</sup>    | 70                       | 46      | 70       | 90        |
| C2 <sup>2</sup>    | M5x0.8P                  | M4x0.7P | M5x0.8P  | M6x1.0P   |
| C3 <sup>2</sup>    | <u>≤</u> 14/ <u>≤</u> 19 | ≦8      | ≦14/≦19  | ≦19/≦24   |
| C4 <sup>2</sup>    | 34                       | 29      | 34       | 45        |
| C5 <sup>2</sup> F6 | 50                       | 30      | 50       | 70        |
| C6 <sup>2</sup>    | 4                        | 4       | 4        | 6         |
| C7 <sup>2</sup>    | 60                       | 42.6    | 60       | 90        |
| C8 <sup>2</sup>    | 33                       | 25      | 33       | 36        |
| C9 <sup>2</sup>    | 108.8                    | 80.5    | 122.8    | 148.5     |
| В                  | 6                        | 5       | 6        | 10        |
| Н                  | 24.5                     | 18      | 24.5     | 35        |

<sup>★</sup> C1~C9 are motor specific dimensions(metric std shown ),Size may vary according to motor flange.

<sup>★</sup> Specification subject to change without notice.

# PUR Specifications Table

| Speci             | fications          |               | Stage | Ratio          | PUR-60            | PUR-75                    | PUR-100                          | PUR-140                      | PUR-180           | PUR-220          |
|-------------------|--------------------|---------------|-------|----------------|-------------------|---------------------------|----------------------------------|------------------------------|-------------------|------------------|
|                   |                    |               |       | 3              | 53                | 145                       | 290                              | 520                          | 580               | 1100             |
|                   |                    |               |       | 4              | 55                | 150                       | 300                              | 550                          | 1100              | 1700             |
|                   |                    |               |       | 5              | 54                | 140                       | 290                              | 530                          | 1200              | 2000             |
|                   |                    |               |       | 6              | 46                | 135                       | 280                              | 490                          | 1100              | 1850             |
|                   |                    |               |       | 7              | 44                | 125                       | 270                              | 450                          | 1100              | 1750             |
|                   |                    |               | 1     | 8              | 41                | 110                       | 240                              | 390                          | 1000              | 1550             |
|                   |                    |               |       | 9              | 37                | 95                        | 220                              | 360                          | 900               | 1500             |
|                   |                    |               |       | 10             | 37                | 95                        | 220                              | 360                          | 900               | 1450             |
|                   |                    |               |       | 14             | 44                | 125                       | 270                              | 450                          | 1100              | 1750             |
|                   |                    |               |       | 20             | 37                | 95                        | 220                              | 360                          | 900               | 1450             |
|                   |                    |               | Stage | Ratio          | PUR-60 (T)        | PUR-75T                   | PUR-100T                         | PUR-140T                     | PUR-180T          | PUR-220T         |
|                   |                    |               |       | 15             | 53                | 145                       | 290                              | 520                          | 580               | 2000             |
| Nominal Output 1  | Γαναιια            | N•m           |       | 20             | 55                | 150                       | 300                              | 550                          | 1100              | 2000             |
| Nominal Output    | rorque             | 14 • 111      |       | 25             | 54                | 140                       | 290                              | 530                          | 1200              | 2000             |
|                   |                    |               |       | 30             | 54                | 140                       | 290                              | 530                          | 1200              | 2000             |
|                   |                    |               |       | 35             | 54                | 140                       | 290                              | 530                          | 1200              | 2000             |
|                   |                    |               | 2     | 40             | 54                | 140                       | 290                              | 530                          | 1200              | 2000             |
|                   |                    |               |       | 45<br>50       | 54                | 140                       | 290                              | 530                          | 1200              | 2000             |
|                   |                    |               |       | 60             | 54<br>46          | 140                       | 290                              | 530                          | 1200<br>1100      | 2000             |
|                   |                    |               |       |                | 44                | 135<br>125                | 280<br>270                       | 490                          | 1100              | 1850             |
|                   |                    |               |       | 70<br>80       | 44                |                           |                                  | 450<br>390                   | 1000              | 1750<br>1550     |
|                   |                    |               |       | 90             | 37                | 95                        | 240                              | 360                          | 900               | 1500             |
|                   |                    |               |       |                |                   | 95                        |                                  |                              | 900               |                  |
|                   |                    |               |       | 100<br>120     | 37<br>46          | 135                       | 220<br>280                       | 360<br>490                   | 1100              | 1450<br>1850     |
|                   |                    |               |       | 140            | 46                | 125                       | 270                              | 450                          | 1100              | 1750             |
|                   |                    |               |       | 160            | 41                | 110                       | 240                              | 390                          | 1000              | 1550             |
|                   |                    |               |       |                |                   |                           | 240                              |                              |                   |                  |
|                   |                    |               |       | 180<br>200     | 37<br>37          | 95<br>95                  | 220                              | 360<br>360                   | 900               | 1500             |
|                   |                    |               |       | 200            | 3/                |                           |                                  |                              | 900               | 1450             |
| Emergency Stop 1  | Torque             | N • m         |       |                | (* Max.           | 3.0 times<br>Output Torqu | s of Nominal O<br>ue T2B =60% of | utput Torque<br>Emergency St | op Torque)        |                  |
| Nominal Input S   | peed               | rpm           | 1,2   | 3-200          | 5000              | 4000                      | 4000                             | 3000                         | 3000              | 2000             |
| Max. Input Spe    | eed                | rpm           | 1,2   | 3-200          | 10000             | 8000                      | 8000                             | 6000                         | 6000              | 4000             |
|                   |                    |               | 1     | 3-20           | _                 | ≦3                        | ≦ 2                              | ≦ 2                          | ≦ 2               | ≦ 2              |
| Micro Backlash    | n P0               | arcmin        | 1     |                |                   |                           |                                  |                              |                   |                  |
|                   |                    |               | 2     | 15-200         | -                 | ≦ 5                       | ≦4                               | ≦4                           | ≦4                | ≦4               |
| Precision Backla  | ch D1              | arcmin        | 1     | 3-20           | ≦ 5               | ≦ 5                       | ≦ 4                              | ≦ 4                          | ≦ 4               | ≦ 4              |
| Frecision backia: | 21111              | arcillili     | 2     | 15-200         | ≦ 7               | ≦ 7                       | ≦ 7                              | ≦ 7                          | ≦ 7               | ≦ 7              |
|                   |                    |               | 1     | 3-20           | ≦ 7               | ≦7                        | ≦ 6                              | ≦ 6                          | ≦ 6               | ≦ 6              |
| Standard Backla   | sh P2              | arcmin        | 2     | 15-200         | = <i>γ</i><br>≦ 9 | = 7<br>≦ 9                | = 0<br>≦ 9                       | = 0<br>≦ 9                   | = 0<br>≦ 9        | = 0<br>≦ 9       |
| Torsional Rigid   | dity               | N • m         | 1,2   | 3-100          | <u>≥9</u><br>7    | <u>≥9</u><br>14           | <u> </u>                         | <u>≥ 9</u><br>50             | <u>≥ 9</u><br>150 | <u>≥9</u><br>220 |
| Max. Radial Lo    |                    | /arcmin       | 1,2   | 3-100          | 4130              | 5220                      | 10650                            | 17600                        | 22000             | 27800            |
|                   |                    |               |       |                |                   |                           |                                  |                              |                   |                  |
| Max. Axial Lo     |                    | N<br>°C       | 1,2   | 3-100<br>3-100 | 2500              | 3300                      | 5700<br>-10 °C ~-                | 11300                        | 14000             | 16200            |
|                   |                    |               |       |                |                   |                           |                                  |                              |                   |                  |
| Service Life      | )                  | hr            |       | 3-100          |                   | 30,00                     | 0 (15,000/ Cont                  |                              | ion)              |                  |
| Efficiency        |                    | %             | 1 2   | 3-10<br>12-100 |                   |                           | ≧ 95<br>≧ 92                     |                              |                   |                  |
|                   |                    |               | 1     | 3-10           | -                 | 5.46                      |                                  |                              |                   |                  |
| Weight            |                    | kg            | 2     | 12-100         | -<br>-            | 5.46<br>4.87              | -                                | -<br>-                       | -                 | <u>-</u>         |
| Mounting Posi     | tion               | -             | 1,2   | 3-100          |                   |                           | Any dire                         | ection                       |                   |                  |
| Noise Level       | 2                  | dBA/1m        | 1,2   | 3-100          | 64                | 66                        | 68                               | 70                           | 72                | 74               |
|                   |                    |               | 1,2   |                | <u> </u>          |                           |                                  |                              |                   | , ,              |
|                   | Protection Class - |               |       | 3-100          |                   |                           | IP6                              |                              |                   |                  |
| Lubrication       | Lubrication -      |               |       | 3-100          |                   |                           | Synthetic L                      | ubricant                     |                   |                  |
|                   |                    |               |       | Inertia(J1)    |                   |                           |                                  |                              |                   |                  |
| Stage             | F                  | Ratio         | ur    | nit            | PUR-60            | PUR-90                    | PUR-115                          | PUR-140                      | PUR-180           | PUR-220          |
|                   |                    | 4/5/7/9       |       |                | 0.40              | 2.28                      | 6.87                             | 24.2                         | 69.8              | 138.2            |
| 1                 |                    |               |       |                | 0.30              | 1.45                      | 4.76                             | 14.5                         | 50.3              | 103.6            |
|                   | 6/8/10/14/20       |               |       | ,              |                   |                           |                                  |                              |                   |                  |
| Stage Ratio       |                    |               | Kg•   | cm²            | PUR-60(T)         | PUR-90T                   | PUR-115T                         | PUR-140T                     | PUR-180T          | PUR-220T         |
|                   | 15/20/25/35/45     |               |       |                | 0.40(0.08)        | 0.72                      | 3.02                             | 7.83                         | 27.7              | 80.3             |
| 2                 |                    | others        |       |                | 0.30(0.06)        | 0.38                      | 1.64                             | 5.00                         | 15.9              | 55.3             |
| 44 A P L II       |                    | ft contar @10 |       |                | ·                 |                           |                                  |                              |                   |                  |

<sup>\* 1.</sup> Applied to the output shaft center @100rpm.
\* 2. Measured at 3000rpm with no load
% The above figures/specifications are subject to change without prior notice.

# **PLANETARY GEARHEADS**



HR

eries F

PUI

Series

eries OGL

γ C

PGRH Series

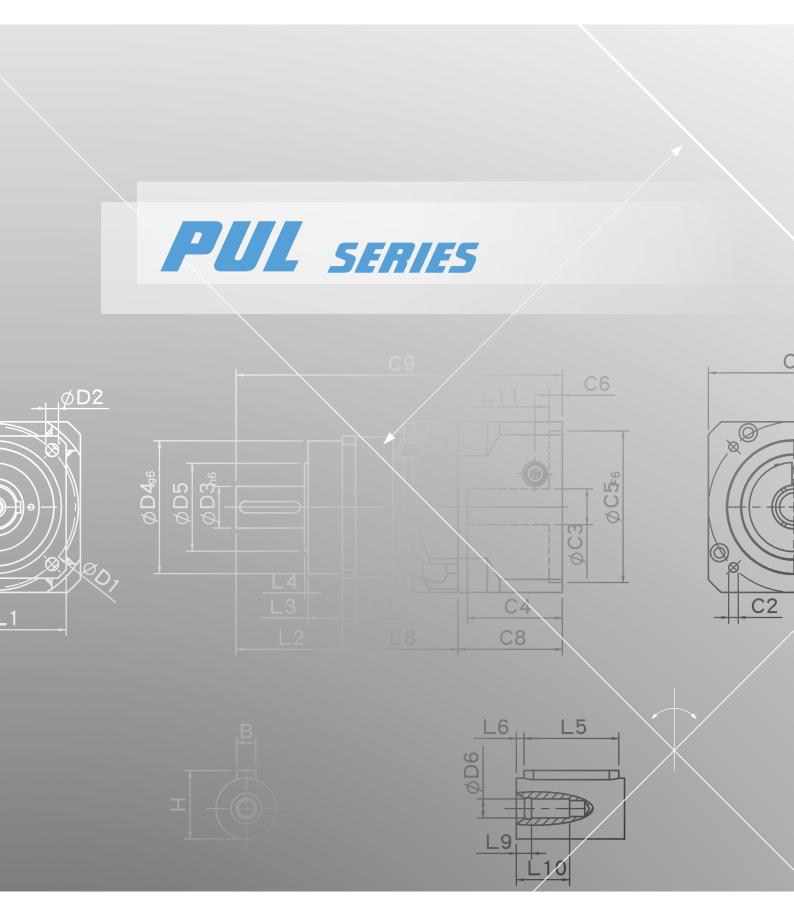
PGR Series

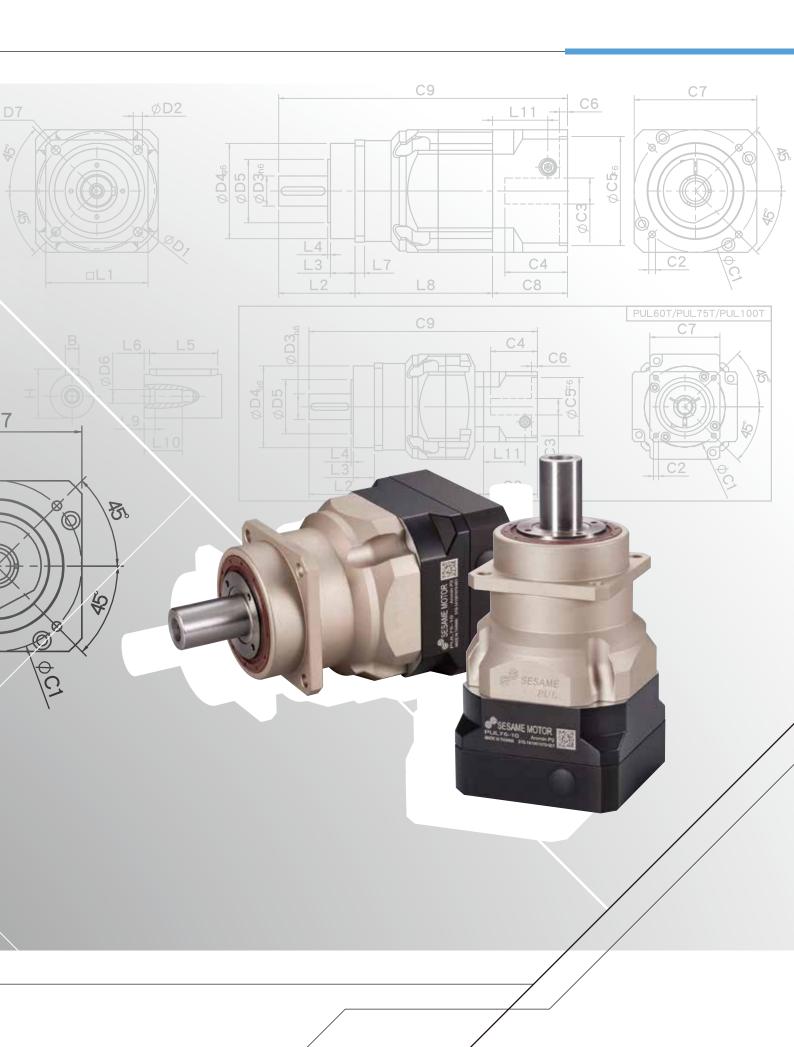
PGFR Series

> PGF Series

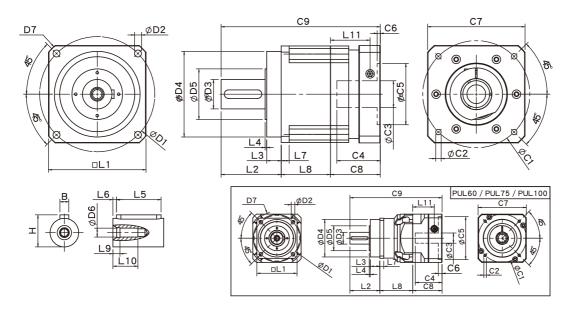
PEI Serie

PEC Series


Seri-


PBC Series

PBE Series


PAE Series

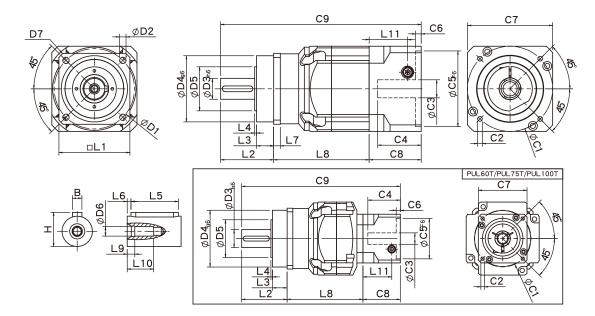






# PUL Single Stage Dimensions




# Specifications

| Dimensions         | PUL60   | PUL75    | PUL100                   | PUL140   | PUL180    | PUL220    |
|--------------------|---------|----------|--------------------------|----------|-----------|-----------|
| D1                 | 68      | 85       | 120                      | 165      | 215       | 250       |
| D2                 | 5.5     | 6.8      | 9                        | 11       | 13        | 17        |
| D3 h6              | 16      | 22       | 32                       | 40       | 55        | 75        |
| D4 g6              | 60      | 70       | 90                       | 130      | 160       | 180       |
| D5                 | 34.6    | 46.4     | 59.6                     | 79.2     | 94.5      | 114.4     |
| D6                 | M5x0.8P | M8x1.25P | M12x1.75P                | M16x2.0P | M20x2.5P  | M20x2.5P  |
| D7                 | 80      | 100      | 138                      | 186      | 239       | 292       |
| L1                 | 62      | 76       | 105                      | 142      | 180       | 220       |
| L2                 | 48.5    | 56       | 88                       | 112      | 112       | 138       |
| L3                 | 18.5    | 18       | 28                       | 27       | 27        | 30        |
| L4                 | 1.5     | 2        | 2                        | 3        | 3         | 3         |
| L5                 | 25      | 32       | 40                       | 60       | 70        | 90        |
| L6                 | 2       | 2        | 5                        | 5        | 6         | 7         |
| L7                 | 6       | 7        | 10                       | 12       | 15        | 20        |
| L8                 | 44      | 61       | 46                       | 64.5     | 92        | 111       |
| L9                 | 4       | 4.5      | 6                        | 6        | 8         | 15        |
| L10                | 16.5    | 20.5     | 30                       | 38       | 48        | 42        |
| L11                | 35.5    | 40.5     | 41.8                     | 70       | 74        | 96        |
| C1 <sup>2</sup>    | 70      | 90       | 115                      | 165      | 200       | 235       |
| C2 <sup>2</sup>    | M5x0.8P | M6x1P    | M8x1.25P                 | M10x1.5P | M12x1.75P | M12x1.75P |
| C3 <sup>2</sup>    | ≦14     | ≦19/≦24  | <u>≤</u> 24/ <u>≤</u> 32 | ≦35/≦38  | ≦50       | ≦55       |
| C4 <sup>2</sup>    | 37      | 47       | 51                       | 66.7     | 81        | 112       |
| C5 <sup>2</sup> F6 | 50      | 70       | 95                       | 130      | 114.3     | 200       |
| C6 <sup>2</sup>    | 4       | 6        | 6                        | 5.5      | 6         | 6         |
| C7 <sup>2</sup>    | 60      | 90       | 115                      | 140      | 182       | 220       |
| C8 <sup>2</sup>    | 46      | 55       | 58                       | 87.2     | 93        | 120       |
| C9 <sup>2</sup>    | 138.5   | 172      | 192                      | 263.7    | 297       | 369       |
| В                  | 5       | 6        | 10                       | 12       | 16        | 20        |
| Н                  | 18      | 24.5     | 35                       | 43       | 59        | 79.5      |

 $<sup>\</sup>star$  C1~C9 are motor specific dimensions(metric std shown ), Size may vary according to motor flange.

<sup>★</sup> Specification subject to change without notice.

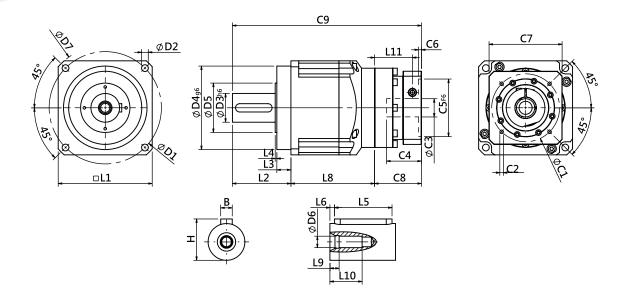
# PUL Double Stage Dimensions-1



### Specifications

#### Unit:mm

| Dimensions         | PUL60/  | PUL60T  | PUL75/  | PUL75T  | PUL100T   |  |
|--------------------|---------|---------|---------|---------|-----------|--|
| D1                 | 6       | 8       | 8       | 120     |           |  |
| D2                 | 5       | .5      | 6       | 9       |           |  |
| D3 h6              | 1       | 6       | 2       | 22      |           |  |
| D4 g6              | 6       | 0       | 7       | 70      |           |  |
| D5                 | 34      | l.6     | 46      | 46.4    |           |  |
| D6                 | M5x     | 0.8P    | M8x     | 1.25P   | M12x1.75P |  |
| D7                 | 8       | 0       | 10      | 00      | 138       |  |
| L1                 | 6       | 2       | 7       | 6       | 105       |  |
| L2                 | 48      | 3.5     | 5       | 6       | 88        |  |
| L3                 | 18      | 3.5     | 1       | .8      | 28        |  |
| L4                 | 1       | .5      |         | 2       | 2         |  |
| L5                 | 2       | 5       | 3       | 32      |           |  |
| L6                 | 2       | 2       | :       | 2       |           |  |
| L7                 | (       | 5       |         | 10      |           |  |
| L8                 | 77      | 72.5    | 101     | 93.5    | 88.5      |  |
| L9                 | 4       | 1       | 4       | 6       |           |  |
| L10                | 16      | 5.5     | 20      | 30      |           |  |
| L11                | 35.5    | 29      | 40.5    | 35.5    | 40.5      |  |
| C1 <sup>2</sup>    | 70      | 46      | 90      | 70      | 90        |  |
| C2 <sup>2</sup>    | M5x0.8P | M4x0.7P | M6x1P   | M5x0.8P | M6x1P     |  |
| C3 <sup>2</sup>    | ≦14     | ≦8      | ≦19/≦24 | ≦14     | ≦19/≦24   |  |
| C4 <sup>2</sup>    | 37      | 27      | 47      | 37      | 47        |  |
| C5 <sup>2</sup> F6 | 50      | 30      | 70      | 50      | 70        |  |
| C6 <sup>2</sup>    | 4       | 4       | 6       | 4       | 6         |  |
| C7 <sup>2</sup>    | 60      | 42.6    | 90      | 60      | 90        |  |
| C8 <sup>2</sup>    | 46      | 38.5    | 55      | 46      | 55        |  |
| C9 <sup>2</sup>    | 171.5   | 159.5   | 212     | 195.5   | 231.5     |  |
| В                  | Ţ       | 5       | (       | 5       | 10        |  |
| Н                  | 1       | 8       | 24      | 1.5     | 35        |  |


<sup>★</sup> C1~C9 are motor specific dimensions(metric std shown ),Size may vary according to motor flange.

eries

**PAE** Series

 $<sup>\</sup>star$  Specification subject to change without notice.

# PUL Double Stage Dimensions-2

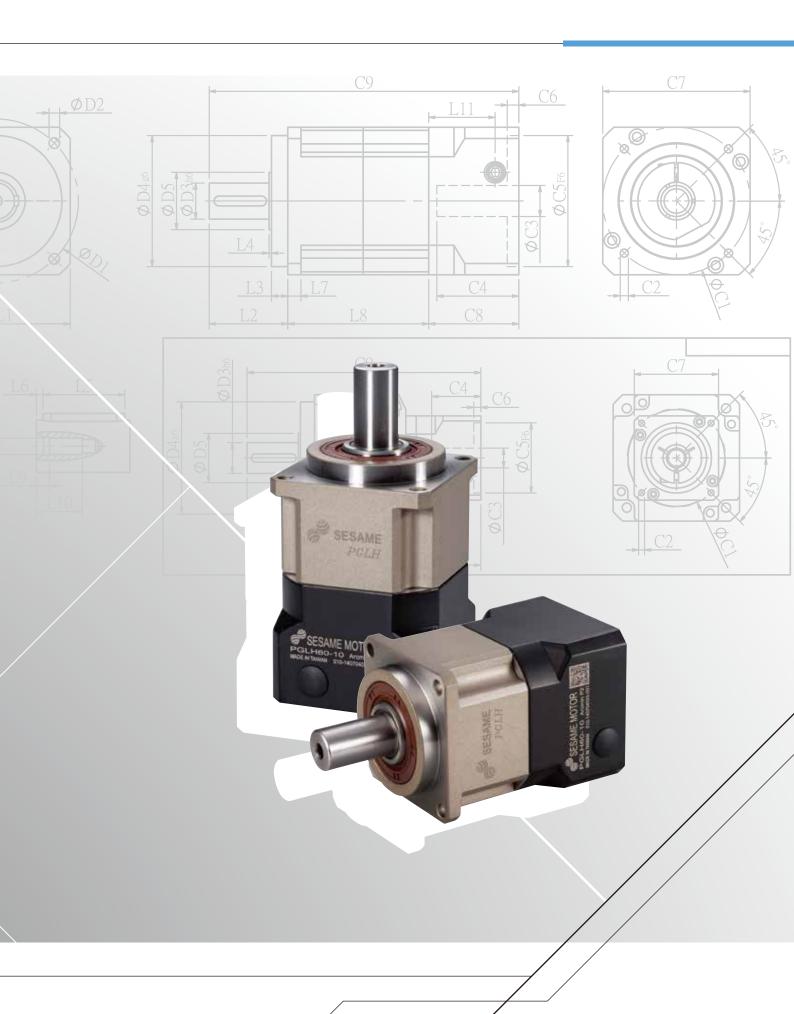


# Specifications

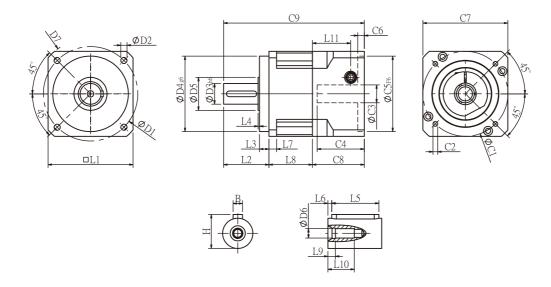
| Dimensions         | PUL140T | PUL180T  | PUL220T |
|--------------------|---------|----------|---------|
| D1                 | -       | 215      | -       |
| D2                 | -       | 13       | -       |
| D3 h6              | -       | 55       | -       |
| D4 g6              | -       | 160      | _       |
| D5                 | -       | 94.5     | -       |
| D6                 | -       | M20x2.5P | -       |
| D7                 | -       | 239      | -       |
| L1                 | -       | 180      | -       |
| L2                 | -       | 112      | -       |
| L3                 | -       | 27       | -       |
| L4                 | -       | 3        | -       |
| L5                 | -       | 70       | -       |
| L6                 | -       | 6        | -       |
| L7                 | -       | 15       | -       |
| L8                 | -       | 160.2    | -       |
| L9                 | -       | 8        | -       |
| L10                | -       | 48       | -       |
| L11                | -       | 72.6     | -       |
| C1 <sup>2</sup>    | -       | 130      | -       |
| C2 <sup>2</sup>    | -       | M8x1.25P | -       |
| C3 <sup>2</sup>    | -       | ≦35/≦38  | -       |
| C4 <sup>2</sup>    | -       | 66.7     | -       |
| C5 <sup>2</sup> F6 | -       | 110      | -       |
| C6 <sup>2</sup>    | -       | 5.5      | -       |
| C7 <sup>2</sup>    | -       | 140      | -       |
| C8 <sup>2</sup>    | -       | 89.8     | -       |
| C9 <sup>2</sup>    |         | 362      |         |
| В                  | -       | 16       | -       |
| Н                  | -       | 59       | -       |

 $<sup>\</sup>bigstar \ \text{C1}{\sim}\text{C9} \ \text{are motor specific dimensions(metric std shown ),Size may vary according to motor flange.}$ 

 $<sup>\</sup>star$  Specification subject to change without notice.


# PUL Specifications Table

| Specifications           |                      | Stage  | Ratio           | PUL-60      | PUL-75                    | PUL-100                                | PUL-140                     | PUL-180       | PUL-220      |
|--------------------------|----------------------|--------|-----------------|-------------|---------------------------|----------------------------------------|-----------------------------|---------------|--------------|
|                          |                      |        | 3               | 53          | 145                       | 290                                    | 520                         | 580           | 1100         |
|                          |                      |        | 4               | 55          | 150                       | 300                                    | 550                         | 1100          | 1700         |
|                          |                      |        | 5               | 54          | 140                       | 290                                    | 530                         | 1200          | 2000         |
|                          |                      | 1      | 6               | 46          | 135                       | 280                                    | 490                         | 1100          | 1850         |
|                          |                      | 1 1    | 7               | 44          | 125                       | 270                                    | 450                         | 1100          | 1750         |
|                          |                      |        | 8               | 41          | 110                       | 240                                    | 390                         | 1000          | 1550         |
|                          |                      |        | 9               | 37<br>37    | 95<br>95                  | 220<br>220                             | 360<br>360                  | 900           | 1500<br>1450 |
|                          |                      | Stage  | Ratio           | PUL-60 (T)  | PUL-75(T)                 | PUL-100T                               | PUL-140T                    | PUL-180T      | PUL-220T     |
|                          |                      |        | 15              | 53          | 145                       | 290                                    | 520                         | 580           | 2000         |
| Nominal Output Tor       | que N•m              |        | 20              | 55          | 150                       | 300                                    | 550                         | 1100          | 2000         |
|                          |                      |        | 25              | 54          | 140                       | 290                                    | 530                         | 1200          | 2000         |
|                          |                      |        | 30              | 54          | 140                       | 290                                    | 530                         | 1200          | 2000         |
|                          |                      |        | 35              | 54          | 140                       | 290                                    | 530                         | 1200          | 2000         |
|                          |                      |        | 40              | 54          | 140                       | 290                                    | 530                         | 1200          | 2000         |
|                          |                      | 2      | 45              | 54          | 140                       | 290                                    | 530                         | 1200          | 2000         |
|                          |                      |        | 50              | 54          | 140                       | 290                                    | 530                         | 1200          | 2000         |
|                          |                      |        | 60              | 46          | 135                       | 280                                    | 490                         | 1200          | 1850         |
|                          |                      |        | 70              | 44          | 125                       | 270                                    | 450                         | 1100          | 1750         |
|                          |                      |        | 90              | 41<br>37    | 95                        | 240<br>220                             | 390<br>360                  | 1000<br>900   | 1550<br>1500 |
|                          |                      |        | 100             | 37          | 95                        | 220                                    | 360                         | 900           | 1450         |
|                          |                      | _      | 100             | 3/          |                           |                                        |                             | 900           | 1450         |
| Emergency Stop Toro      | que N•m              |        |                 | (* Max.     | 3.0 times<br>Output Torqu | of Nominal Ou<br>e T2B =60% of         | utput Torque<br>Emergency S | top Torque)   |              |
| Nominal Input Spee       | ed rpm               | 1,2    | 3-100           | 5000        | 4000                      | 4000                                   | 3000                        | 3000          | 2000         |
| Max. Input Speed         | rpm                  | 1,2    | 3-100           | 10000       | 8000                      | 8000                                   | 6000                        | 6000          | 4000         |
|                          |                      | 1      | 3-10            | ≦ 2         | ≦ 2                       | ≦1                                     | ≦1                          | ≦1            | ≦1           |
| Micro Backlash PC        | ) arcmin             | 2      | 12-100          | <b>≦</b> 4  | <b>≦</b> 4                | ≦ 3                                    | ≦ 3                         | ≦3            | ≦ 3          |
|                          |                      | 1      | 3-10            | <u> </u>    | <u> </u>                  | <u>-3</u><br>≦3                        | <u>-3</u><br>≦3             | <u></u><br>≦3 | <u></u> ≦ 3  |
| Precision Backlash I     | 21 arcmin            | 1      | 1 1             |             |                           |                                        |                             |               |              |
|                          |                      | 2      | 12-100          | ≦6          | ≦6                        | ≦ 5                                    | ≦ 5                         | ≦5            | ≦ 5          |
| Standard Backlash I      | 2 arcmin             | 1      | 3-10            | ≦ 6         | ≦ 6                       | ≦ 5                                    | ≦ 5                         | ≦ 5           | ≦ 5          |
| Staridard Backlasiri     | Z dreimin            | 2      | 12-100          | ≦8          | ≦8                        | ≦ 7                                    | ≦ 7                         | ≦7            | ≦7           |
| Torsional Rigidity       | N • m<br>/arcmin     | 1,2    | 3-100           | 7           | 14                        | 25                                     | 50                          | 150           | 220          |
| Max. Radial Load         | N                    | 1,2    | 3-100           | 4130        | 5220                      | 10650                                  | _                           | 22000         | 27800        |
| Max. Axial Load          | N                    | 1,2    | 3-100           | 2500        | 3300                      | 5700                                   | -                           | 14000         | 16200        |
| Operating Temp.          | °C                   |        | 3-100           |             |                           | <b>-</b> 10 °C ∼-                      | +90 °C                      |               |              |
| Service Life             | hr                   |        | 3-100           |             | 30 000                    | ) (15,000/ Cont                        | inuous opera                | tion)         |              |
| Service Life             | 111                  | 1      |                 |             | 30,000                    |                                        |                             | uo11)         |              |
| Efficiency               | %                    | 1 2    | 3-10<br>12-100  |             |                           | ≧ 97 <sup>.</sup><br>≧ 94 <sup>.</sup> |                             |               |              |
| \A( : 1 :                |                      | 1      | 3-10            | 1.8         | 4.0                       | 6.7                                    | -                           | 30.8          | 55           |
| Weight                   | kg                   | 2      | 12-100          | 2.4/2.0     | 5.7/4.5                   | 8.2                                    | _                           | 37            | 68.5         |
| Mounting Position        | _                    | 1,2    | 3-100           | ,           | ,                         | Any dire                               |                             |               | 30.5         |
|                          |                      |        |                 | E 0         |                           |                                        |                             |               |              |
| Noise Level <sup>2</sup> | dBA/1m               | 1,2    | 3-100           | 58          | 60                        | 63                                     | 65                          | 67            | 70           |
| Protection Class         | -                    | 1,2    | 3-100           |             |                           | IP6                                    | 5                           |               |              |
| Lubrication              | -                    | 1,2    | 3-100           |             |                           | Synthetic L                            | ubricant                    |               |              |
| Edolication              |                      | 1 -, 4 | 3 100           | Inertia(J1) |                           | Synthetic L                            | a of feat fe                |               |              |
| Stage                    | Ratio                | ur     | nit             | PUL-60      | PUL-75                    | PUL-100                                | PUL-140                     | PUL-180       | PUL-220      |
| Stage                    |                      | ur     | III             |             |                           |                                        |                             |               |              |
| _                        | 3                    | 4      | [               | 0.23        | 0.97                      | 2.35                                   | 10.00                       | 30.50         | 79.50        |
|                          | 4                    |        |                 | 0.18        | 0.67                      | 1.66                                   | 7.17                        | 25.86         | 58.21        |
| 1                        | 5<br>6/7/8           |        |                 | 0.17        | 0.65                      | 1.50                                   | 6.52                        | 23.63         | 54.36        |
|                          |                      |        |                 | 0.14        | 0.60                      | 1.45                                   | 6.17                        | 22.92         | 54.12        |
|                          | 9/10                 | Ka.    | cm <sup>2</sup> | 0.14        | 0.58                      | 1.41                                   | 6.10                        | 22.73         | 53.98        |
| Stage                    | Ratio                |        | G11             | PUL-60(T)   | PUL-75(T)                 | PUL-100T                               | PUL-140T                    | PUL-180T      | PUL-220      |
| Stage                    |                      | -      | ļ.              |             |                           |                                        |                             |               |              |
|                          | 15/20/25             | _      | ].              | 0.17(0.02)  | 0.65(0.17)                | 0.65                                   | 1.50                        | 6.52          | 23.63        |
| 2                        | 30/35/40             |        |                 | 0.14(0.02)  | 0.60(0.14)                | 0.60                                   | 1.45                        | 6.17          | 22.92        |
|                          | 5/50/60/70/80/90/100 | 1      | - 1             | 0.14(0.02)  | 0.58(0.14)                | 0.58                                   | 1.41                        | 6.10          | 22.73        |

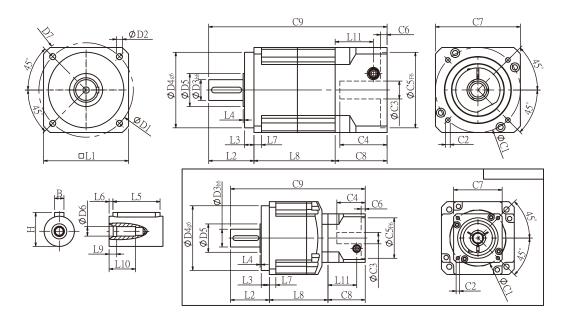

\* 1. Applied to the output shaft center @100rpm.
\* 2. Measured at 3000rpm with no load
% The above figures/specifications are subject to change without prior notice.







# PGLH Single Stage Dimensions




# Specifications

| Dimensions         | PGLH42  | PGLH60  | PGLH90   | PGLH115                               |
|--------------------|---------|---------|----------|---------------------------------------|
| D1                 | 50      | 70      | 100      | 130                                   |
| D2                 | 3.4     | 5.5     | 6.5      | 8.5                                   |
| D3 h6              | 13      | 16      | 22       | 32                                    |
| D4 g6              | 35      | 50      | 80       | 110                                   |
| D5                 | 15      | 25      | 35       | 45                                    |
| D6                 | M4x0.7P | M5x0.8P | M8x1.25P | M12x1.75P                             |
| D7                 | 56      | 80      | 118      | 148                                   |
| L1                 | 42.6    | 60      | 90       | 115                                   |
| L2                 | 26      | 37      | 48       | 63                                    |
| L3                 | 5.5     | 7       | 10       | 10                                    |
| L4                 | 1       | 1.5     | 1.5      | 3.5                                   |
| L5                 | 15      | 25      | 32       | 40                                    |
| L6                 | 2       | 2       | 3        | 5                                     |
| L7                 | 4       | 6       | 8        | 11                                    |
| L8                 | 28.3    | 37      | 46       | 57                                    |
| L9                 | 4       | 4       | 4.5      | 6                                     |
| L10                | 14      | 16.5    | 20.5     | 30                                    |
| L11                | 29      | 35.5    | 40.5     | 53.7                                  |
| C1 <sup>2</sup>    | 46      | 70      | 90       | 115                                   |
| C2 <sup>2</sup>    | M4x0.7P | M5x0.8P | M6x1.0P  | M8x1.25P                              |
| C3 <sup>2</sup>    | ≦8/≦14  | ≦14/≦19 | ≦19/≦24  | <u>≤</u> 24/ <u>≤</u> 32/ <u>≤</u> 38 |
| C4 <sup>2</sup>    | 27      | 37      | 41       | 56.3                                  |
| C5 <sup>2</sup> F6 | 30      | 50      | 70       | 95                                    |
| C6 <sup>2</sup>    | 4       | 4       | 6        | 10                                    |
| C7 <sup>2</sup>    | 42.6    | 60      | 90       | 115                                   |
| C8 <sup>2</sup>    | 38.5    | 46      | 55       | 75                                    |
| C9 <sup>2</sup>    | 92.8    | 120     | 149      | 195                                   |
| В                  | 5       | 5       | 6        | 10                                    |
| Н                  | 15      | 18      | 24.5     | 35                                    |

 $<sup>\</sup>bigstar \ \text{C1}{\sim}\text{C9} \ \text{are motor specific dimensions(metric std shown ),} Size \ \text{may vary according to motor flange}.$ 

<sup>★</sup> Specification subject to change without notice.



# Specifications

| Dimensions         | PGLH42  | PGLH60                   | PGLH60T | PGLH90   | PGLH90T | PGLH115   |  |
|--------------------|---------|--------------------------|---------|----------|---------|-----------|--|
| D1                 | 50      | 7                        | 0       | 10       | 130     |           |  |
| D2                 | 3.4     | 5                        | .5      | 6        | .5      | 8.5       |  |
| D3 h6              | 13      | 1                        | 6       | 22       |         | 32        |  |
| D4 g6              | 35      | 5                        | 0       | 8        | 110     |           |  |
| D5                 | 15      | 2                        | 5       | 3        | 45      |           |  |
| D6                 | M4x0.7P | M5x                      | :0.8P   | M8x1.25P |         | M12x1.75P |  |
| D7                 | 56      | 8                        | 0       | 1:       | 18      | 148       |  |
| L1                 | 42.6    | 6                        | 0       | 9        | 0       | 115       |  |
| L2                 | 26      | 3                        | 7       | 4        | -8      | 63        |  |
| L3                 | 5.5     |                          | 7       | 1        | .0      | 10        |  |
| L4                 | 1       | 1                        | .5      | 1        | .5      | 3.5       |  |
| L5                 | 15      | 2                        | 5       | 3        | 40      |           |  |
| L6                 | 2       |                          | 2       | 3        |         | 5         |  |
| L7                 | 4       | (                        | 5       | 8        |         | 11        |  |
| L8                 | 55.3    | 70 65.5                  |         | 90       | 78.5    | 99.5      |  |
| L9                 | 4       | 4                        |         | 4.5      |         | 6         |  |
| L10                | 14      | 16                       | 5.5     | 20.5     |         | 30        |  |
| L11                | 29      | 35.5                     | 29      | 40.5     | 35.5    | 40.7      |  |
| C1 <sup>2</sup>    | 46      | 70                       | 46      | 90       | 70      | 90        |  |
| C2 <sup>2</sup>    | M4x0.7P | M5x0.8P                  | M4x0.7P | M6x1.0P  | M5x0.8P | M6x1.0P   |  |
| C3 <sup>2</sup>    | ≦8/≦14  | <u>≦</u> 14/ <u>≦</u> 19 | ≦8/≦14  | ≦19/≦24  | ≦14/≦19 | ≦19/≦24   |  |
| C4 <sup>2</sup>    | 27      | 37                       | 27      | 41       | 37      | 46        |  |
| C5 <sup>2</sup> F6 | 30      | 50                       | 30      | 70       | 50      | 70        |  |
| C6 <sup>2</sup>    | 4       | 4                        | 4       | 6        | 4       | 10        |  |
| C7 <sup>2</sup>    | 42.6    | 60                       | 42.6    | 90       | 60      | 90        |  |
| C8 <sup>2</sup>    | 38.5    | 46                       | 38.5    | 55       | 46      | 60        |  |
| C9 <sup>2</sup>    | 119.8   | 153                      | 141     | 193      | 172.5   | 222.5     |  |
| В                  | 5       |                          | 5       |          | 6       |           |  |
| Н                  | 15      | 1                        | 8       | 24       | 1.5     | 35        |  |

<sup>★</sup> C1~C9 are motor specific dimensions(metric std shown ),Size may vary according to motor flange.

 $<sup>\</sup>star$  Specification subject to change without notice.

# PGLH Specifications Table

| Specifications           |                      | Stage | Ratio      | PGLH-42        | PGLH-60                  | PGLH-90                  | PGLH-115  |
|--------------------------|----------------------|-------|------------|----------------|--------------------------|--------------------------|-----------|
|                          |                      |       | 3          | 19             | 53                       | 145                      | 290       |
|                          |                      |       | 4          | 20             | 55                       | 150                      | 300       |
|                          |                      |       | 5          | 17             | 54                       | 140                      | 290       |
|                          |                      | 1     | 7          | 14             | 44                       | 125                      | 270       |
|                          |                      |       | 10         | 11             | 37                       | 95                       | 220       |
|                          |                      |       | 10         |                | 57                       | 95                       |           |
|                          |                      | Stage | Ratio      | PGLH-42        | PGLH-60(T)               | PGLH-90(T)               | PGLH-115T |
| Nominal Output Toro      | que N•m              |       | 15         | 19             | 53                       | 145                      | 290       |
| rtonmar output for       | 140                  |       | 20         | 20             | 55                       | 150                      | 300       |
|                          |                      |       | 25         | 17             | 54                       | 140                      | 290       |
|                          |                      |       | 30         | 17             | 54                       | 140                      | 290       |
|                          |                      | 2     | 35         | 17             | 54                       | 140                      | 290       |
|                          |                      |       | 40         | 17             | 54                       | 140                      | 290       |
|                          |                      |       | 50         | 17             | 54                       | 140                      | 290       |
|                          |                      |       | 70         | 14             | 44                       | 125                      | 270       |
|                          |                      |       | 100        | 11             | 37                       | 95                       | 220       |
|                          |                      |       | 100        |                | s of Nominal Outr        |                          | 220       |
| Emergency Stop Toro      | que N•m              |       | (* N       |                |                          | nergency Stop To         | rque)     |
| Nominal Input Spee       | ed rpm               | 1,2   | 3-100      | 4000           | 4000                     | 3000                     | 3000      |
| Max. Input Speed         | rpm                  | 1,2   | 3-100      | 8000           | 8000                     | 6000                     | 6000      |
| Dragician Raghlach I     | 21 arenain           | 1     | 3-10       | ≦ 6            | ≦ 6                      | ≦ 6                      | ≦ 5       |
| Precision Backlash I     | P1 arcmin            | 2     | 12-100     | ≦ 8            | ≦ 8                      | ≦8                       | ≦7        |
| Standard Backlash I      | 2 arcmin             | 1     | 3-10       | ≦ 8            | ≦ 8                      | ≦ 8                      | ≦7        |
| Staridard Dacklasiri     |                      | 2     | 12-100     | ≦ 10           | ≦ 10                     | ≦ 10                     | ≦ 9       |
| Torsional Rigidity       | N • m<br>/arcmin     | 1,2   | 3-100      | 2.5            | 6                        | 12                       | 23        |
| Max. Radial Load         | N                    | 1,2   | 3-100      | 640            | 1260                     | 2230                     | 4300      |
| Max. Axial Load          | N                    | 1,2   | 3-100      | 410            | 600                      | 1500                     | 3310      |
| Operating Temp.          | °C                   |       | 3-100      | -10 °C ~+90 °C |                          |                          |           |
| Service Life             | hr                   |       | 3-100      | 2              | 0,000 (10,000/ Co        | ntinuous operatio        | n)        |
| Efficiency               | %                    | 1     | 3-10       |                | ≧ 9                      | 97%                      |           |
| Efficiency               | /0                   | 2     | 12-100     |                | ≧ 9                      | 94%                      |           |
| Weight                   | kg                   | 1     | 3-10       | 0.6            | 1.3                      | 3.5                      | 7.8       |
|                          | _                    | 2     | 12-100     | 0.9            | 2.0/1.56                 | 5.6/3.9                  | 9.5       |
| Mounting Position        |                      | 1,2   | 3-100      |                |                          | irection                 |           |
| Noise Level <sup>2</sup> | dBA/1m               | 1,2   | 3-100      | 58             | 60                       | 63                       | 65        |
| Protection Class         | -                    | 1,2   | 3-100      |                | IF                       | <sup>2</sup> 65          |           |
| Lubrication              | -                    | 1,2   | 3-100      |                | Synthetic                | Lubricant                |           |
|                          |                      |       | Inertia(   | J1)            |                          |                          |           |
| Stage                    | Ratio                |       | unit       | PGLH-42        | PGLH-60                  | PGLH-90                  | PGLH-115  |
|                          | 3                    | 3     |            | 0.03           | 0.23                     | 0.97                     | 2.35      |
|                          | 4                    |       |            | 0.02           | 0.18                     | 0.67                     | 1.66      |
| 1                        | 5                    |       |            | 0.02           | 0.17                     | 0.65                     | 1.50      |
|                          | 7                    |       | Kg • cm²   | 0.02           | 0.14                     | 0.60                     | 1.45      |
| C+o                      | 10                   |       | kg • ciii⁻ | 0.02           | 0.14                     | 0.58                     | 1.41      |
| Stage                    | Ratio                |       |            | PGLH-42        | PGLH-60(T)               | PGLH-90(T)               | PGLH-115T |
| 2                        | 15/20/25<br>30/35/40 |       |            | 0.02           | 0.17(0.02)<br>0.14(0.02) | 0.65(0.17)<br>0.60(0.14) | 0.65      |
| 2                        | 50/70/100            |       |            | 0.02           | 0.14(0.02)               | 0.58(0.14)               | 0.58      |
|                          | 35,75,100            | 1     |            | 1 0.02         | 0.2 (0.02)               | 0.55(5.11)               | 5.50      |

<sup>\* 1.</sup> Applied to the output shaft center @100rpm. \* 2. Measured at 3000rpm with no load

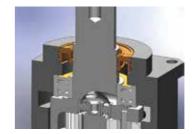
# **PLANETARY GEARHEADS**










Alloy steel gear with unique heat treatment. Additionally, with gear grinding processing to get the best accuracy, high wear resistance and high impact toughness.

long-life of the planetary gear.

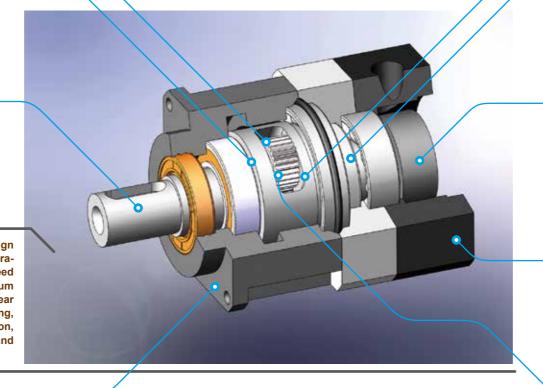




The sun gear bearing is placed directly into the planetary arm bracket, the overall mechanical structure designed to ensure concentricity of the transmission components.



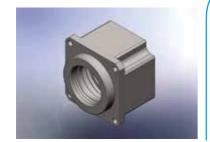
High-tech oil seal design on the upper lip guard against dust intruder, lower lip guard against oil leak. Protection grade IP65 safeguards fully avoid leaking problem, and given it maintenance free.




Planetary arm bracket and output shaft are

one-piece constructed, setting bearing apart for

larger span to reach the largest reverse rigid and contribute high axis radial load capacity.


PGL series overall Grinding process to smooth surface of output shaft, suitable for combination operaand with oil seal to minimum friction coefficient and tion with servo motor high-speed reducing start up load; result in the best seal-ability input and achieves maximum and extended lifespan. torque output. Precision gear design and gear processing, create a low backlash operation, high efficiency, low noise and

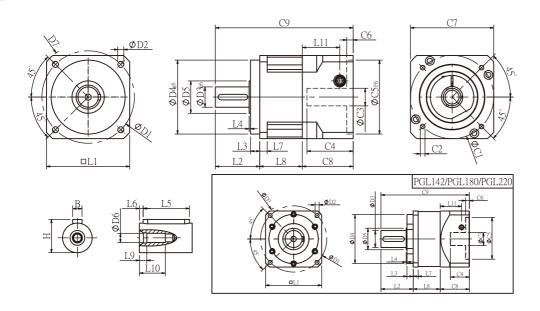


Input-end and motor shaft are coupled through a dynamic balanced collar clamping mechanism to ensure connection interface concentricity and zero slip power transmission at high speed.



Advanced motor bracket design coupled with the input shaft bushing is easy to mount to any servo or stepper motor.



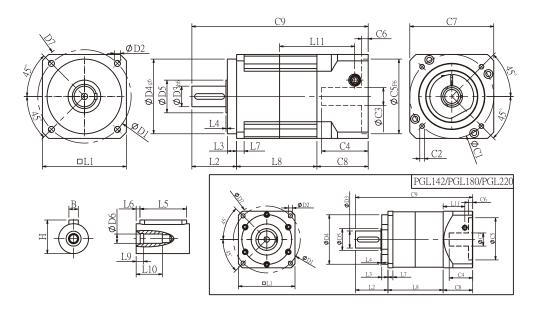

Advanced electroless nickel plating surface treatment resists scratch and corrosion. Suitable for stringent require of high-tech equipment.

The gearbox and internal gear ring are one-piece constructed, and then processed with advanced Germany gear shaper machinery for high precision, high torque and abrade consumption.



Planet gear transmission interface equipped with needle bearings, full needle roller bearing aligned without retainer achieve maximum exposure but smallest gap tolerances. Enhance over-all gear structure rigid and output torque.

# PGL Single Stage Dimensions



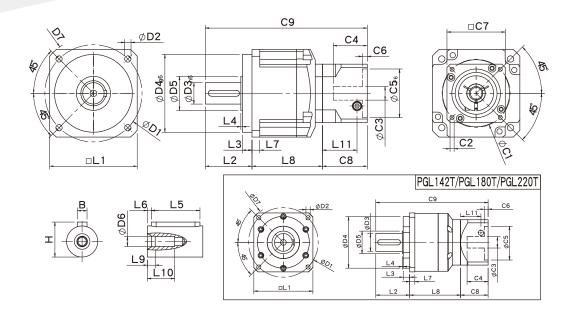

# Specifications

| Dimensions         | PGL42   | PGL60       | PGL90                    | PGL115                   | PGL142   | PGL180    | PGL220      |
|--------------------|---------|-------------|--------------------------|--------------------------|----------|-----------|-------------|
| D1                 | 50      | 70          | 100                      | 130                      | 165      | 215       | 250         |
| D2                 | 3.4     | 5.5         | 6.5                      | 8.5                      | 10.5     | 13        | 17          |
| D3 h6              | 13      | 16          | 22                       | 32                       | 40       | 55        | 75          |
| D4 g6              | 35      | 50          | 80                       | 110                      | 130      | 160       | 180         |
| D5                 | 15      | 25          | 35                       | 45                       | 50       | 70        | 90          |
| D6                 | M4x0.7P | M5x0.8P     | M8x1.25P                 | M12x1.75P                | M16x2.0P | M20x2.5P  | M20x2.5P    |
| D7                 | 56      | 80          | 118                      | 148                      | 186      | 239       | 292         |
| L1                 | 42.6    | 60          | 90                       | 115                      | 142      | 182       | 220         |
| L2                 | 26      | 37          | 48                       | 62                       | 93       | 104.5     | 138         |
| L3                 | 5.5     | 7           | 10                       | 8                        | 8        | 20        | 30          |
| L4                 | 1.5     | 1.5         | 1.5                      | 3                        | 6        | 2.5       | 3           |
| L5                 | 15      | 25          | 32                       | 40                       | 60       | 70        | 90          |
| L6                 | 2       | 2           | 3                        | 5                        | 5        | 6         | 7           |
| L7                 | 4       | 6           | 8                        | 12                       | 18       | 16        | 20          |
| L8                 | 28.3    | 36          | 46                       | 59                       | 79       | 87.5      | 117.5       |
| L9                 | 4       | 4           | 4.5                      | 6                        | 6        | 8         | 7           |
| L10                | 14      | 16.5        | 20.5                     | 30                       | 38       | 48        | 42          |
| L11                | 29      | 35.5        | 40.5                     | 42                       | 63       | 69.5      | 102.2       |
| C1 <sup>2</sup>    | 46      | 70          | 90                       | 115                      | 145      | 200       | 235         |
| C2 <sup>2</sup>    | M4x0.7P | M5x0.8P     | M6x1.0P                  | M8x1.25P                 | M8x1.25P | M12x1.75P | M12x1.75P   |
| C3 <sup>2</sup>    | ≦8      | <u>≤</u> 14 | <i>≦</i> 19/ <i>≦</i> 24 | <i>≦</i> 24/ <i>≦</i> 28 | ≦35      | ≦50       | <u>≤</u> 55 |
| C4 <sup>2</sup>    | 27      | 37          | 47                       | 58                       | 66       | 82        | 98          |
| C5 <sup>2</sup> F6 | 30      | 50          | 70                       | 95                       | 110      | 114.3     | 200         |
| C6 <sup>2</sup>    | 4       | 4           | 6                        | 10                       | 6        | 13        | 12          |
| C7 <sup>2</sup>    | 42.6    | 60          | 90                       | 115                      | 140      | 182       | 220         |
| C8 <sup>2</sup>    | 38.5    | 46          | 55                       | 63                       | 80       | 95        | 130         |
| C9 <sup>2</sup>    | 92.8    | 119         | 149                      | 184                      | 252      | 287       | 385.5       |
| В                  | 5       | 5           | 6                        | 10                       | 12       | 16        | 20          |
| Н                  | 15      | 18          | 24.5                     | 35                       | 43       | 59        | 79.5        |

 $<sup>\</sup>bigstar \ \text{C1}{\sim}\text{C9} \ \text{are motor specific dimensions(metric std shown ), Size may vary according to motor flange.}$ 

<sup>★</sup> Specification subject to change without notice.




# Specifications

| Dimensions         | PGL42   | PGL60       | PGL90    | PGL115                   | PGL142   | PGL180      | PGL220      |
|--------------------|---------|-------------|----------|--------------------------|----------|-------------|-------------|
| D1                 | 50      | 70          | 100      | 130                      | 165      | 215         | 250         |
| D2                 | 3.4     | 5.5         | 6.5      | 8.5                      | 10.5     | 13          | 17          |
| D3 h6              | 13      | 16          | 22       | 32                       | 40       | 55          | 75          |
| D4 g6              | 35      | 50          | 80       | 110                      | 130      | 160         | 180         |
| D5                 | 15      | 25          | 35       | 45                       | 50       | 70          | 90          |
| D6                 | M4x0.7P | M5x0.8P     | M8x1.25P | M12x1.75P                | M16x2.0P | M20x2.5P    | M20x2.5P    |
| D7                 | 56      | 80          | 118      | 148                      | 186      | 239         | 292         |
| L1                 | 42.6    | 60          | 90       | 115                      | 142      | 182         | 220         |
| L2                 | 26      | 37          | 48       | 62                       | 93       | 104.5       | 138         |
| L3                 | 5.5     | 7           | 10       | 8                        | 8        | 20          | 30          |
| L4                 | 1.5     | 1.5         | 1.5      | 3                        | 6        | 2.5         | 3           |
| L5                 | 15      | 25          | 32       | 40                       | 60       | 70          | 90          |
| L6                 | 2       | 2           | 3        | 5                        | 5        | 6           | 7           |
| L7                 | 4       | 6           | 8        | 12                       | 18       | 16          | 20          |
| L8                 | 54.3    | 64          | 86       | 107                      | 140      | 177.5       | 232         |
| L9                 | 4       | 4           | 4.5      | 6                        | 6        | 8           | 7           |
| L10                | 14      | 16.5        | 20.5     | 30                       | 38       | 48          | 42          |
| L11                | 29      | 35.5        | 40.5     | 42                       | 63       | 69.5        | 102.2       |
| C1 <sup>2</sup>    | 46      | 70          | 90       | 115                      | 145      | 200         | 235         |
| C2 <sup>2</sup>    | M4x0.7P | M5x0.8P     | M6x1.0P  | M8x1.25P                 | M8x1.25P | M12x1.75P   | M12x1.75P   |
| C3 <sup>2</sup>    | ≦8      | <u>≤</u> 14 | ≦19/≦24  | <u>≤</u> 24/ <u>≤</u> 28 | ≦35      | <u>≤</u> 50 | <u>≤</u> 55 |
| C4 <sup>2</sup>    | 27      | 37          | 47       | 58                       | 66       | 82          | 98          |
| C5 <sup>2</sup> F6 | 30      | 50          | 70       | 95                       | 110      | 114.3       | 200         |
| C6 <sup>2</sup>    | 4       | 4           | 6        | 10                       | 6        | 13          | 12          |
| C7 <sup>2</sup>    | 42.6    | 60          | 90       | 115                      | 140      | 182         | 220         |
| C8 <sup>2</sup>    | 38.5    | 46          | 55       | 63                       | 80       | 95          | 130         |
| C9 <sup>2</sup>    | 118.8   | 147         | 189      | 232                      | 313      | 377         | 500         |
| В                  | 5       | 5           | 6        | 10                       | 12       | 16          | 20          |
| Н                  | 15      | 18          | 24.5     | 35                       | 43       | 59          | 79.5        |

<sup>★</sup> C1~C9 are motor specific dimensions(metric std shown ),Size may vary according to motor flange.

 $<sup>\</sup>bigstar$  Specification subject to change without notice.

# PGL Double Stage Dimensions-2



### Specifications

| Dimensions         | PGL60T  | PGL90T   | PGL115T                  | PGL142T                  | PGL180T     | PGL220T     |
|--------------------|---------|----------|--------------------------|--------------------------|-------------|-------------|
| D1                 | 70      | 100      | 130                      | 165                      | 215         | 250         |
| D2                 | 5.5     | 6.5      | 8.5                      | 10.5                     | 13          | 17          |
| D3 h6              | 16      | 22       | 32                       | 40                       | 55          | 75          |
| D4 g6              | 50      | 80       | 110                      | 130                      | 160         | 180         |
| D5                 | 25      | 35       | 45                       | 50                       | 70          | 90          |
| D6                 | M5x0.8P | M8x1.25P | M12x1.75P                | M16x2.0P                 | M20x2.5P    | M20x2.5P    |
| D7                 | 80      | 118      | 148                      | 186                      | 239         | 292         |
| L1                 | 60      | 90       | 115                      | 142                      | 182         | 220         |
| L2                 | 37      | 48       | 62                       | 93                       | 104.5       | 138         |
| L3                 | 7       | 10       | 8                        | 8                        | 20          | 30          |
| L4                 | 1.5     | 1.5      | 3                        | 6                        | 2.5         | 3           |
| L5                 | 25      | 32       | 40                       | 60                       | 70          | 90          |
| L6                 | 2       | 3        | 5                        | 5                        | 6           | 7           |
| L7                 | 6       | 8        | 12                       | 18                       | 16          | 20          |
| L8                 | 58.8    | 72.5     | 97.4                     | 127                      | 157         | 199.5       |
| L9                 | 4       | 4.5      | 6                        | 6                        | 8           | 7           |
| L10                | 16.5    | 20.5     | 30                       | 38                       | 48          | 42          |
| L11                | 29      | 35.5     | 40.5                     | 42                       | 63          | 69.5        |
| C1 <sup>2</sup>    | 46      | 70       | 90                       | 115                      | 145         | 200         |
| C2 <sup>2</sup>    | M4x0.7P | M5x0.8P  | M6x1.0P                  | M8x1.25P                 | M8x1.25P    | M12x1.75P   |
| C3 <sup>2</sup>    | ≦8      | ≦14      | <u>≤</u> 19/ <u>≤</u> 24 | <u>≤</u> 24/ <u>≤</u> 28 | <u>≤</u> 35 | <u>≤</u> 50 |
| C4 <sup>2</sup>    | 27      | 37       | 47                       | 58                       | 66          | 82          |
| C5 <sup>2</sup> F6 | 30      | 50       | 70                       | 95                       | 110         | 114.3       |
| C6 <sup>2</sup>    | 4       | 4        | 6                        | 10                       | 6           | 13          |
| C7 <sup>2</sup>    | 42.6    | 60       | 90                       | 115                      | 140         | 182         |
| C8 <sup>2</sup>    | 38.5    | 46       | 55                       | 63                       | 80          | 95          |
| C9 <sup>2</sup>    | 134.3   | 166.5    | 214.4                    | 283                      | 341.5       | 432.5       |
| В                  | 5       | 6        | 10                       | 12                       | 16          | 20          |
| Н                  | 18      | 24.5     | 35                       | 43                       | 59          | 79.5        |

 $<sup>\</sup>star$  C1~C9 are motor specific dimensions(metric std shown ), Size may vary according to the motor flange chosen.

 $<sup>\</sup>bigstar$  Specification subject to change without notice.

#### PGL Specifications Table

| Specifications           |                  | Stage  | Ratio           | PGL-42               | PGL-60                                 | PGL-90                                 | PGL-115                      | PGL-142                                | PGL-180                                | PGL-220                                |
|--------------------------|------------------|--------|-----------------|----------------------|----------------------------------------|----------------------------------------|------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
|                          |                  |        | 3               | 13.8                 | 44.2                                   | 95.2                                   | 283                          | 482                                    | 1151                                   | 1670                                   |
|                          |                  |        | 4               | 11.9                 | 35.9                                   | 74.6                                   | 249                          | 490                                    | 1055                                   | 1574                                   |
|                          |                  |        | 5               | 13.8                 | 43.0                                   | 95.2                                   | 283                          | 473                                    | 1151                                   | 1670                                   |
|                          |                  |        | 7               | 12.5<br>11.9         | 39.4                                   | 90.9                                   | 266<br>219                   | 436                                    | 1055<br>1055                           | 1574<br>1574                           |
|                          |                  | 1      | 8               | 10.9                 | 36.0<br>32.4                           | 85.6<br>85.0                           | 219                          | 400<br>363                             | 860                                    | 1184                                   |
|                          |                  |        | 9               | 9.8                  | 28.7                                   | 80.0                                   | 210                          | 320                                    | 764                                    | 1185                                   |
|                          |                  |        | 10              | 10.1                 | 25.0                                   | 75.0                                   | 210                          | 320                                    | 763                                    | 1184                                   |
|                          |                  | Stage  | Ratio           | PGL-42               | PGL-60 (T)                             | PGL-90(T)                              | PGL-115(T)                   |                                        | PGL-180(T)                             | PGL-220(T                              |
| New York Order (Trees    | N                |        | 15              | 13.8                 | 44.2                                   | 95.2                                   | 283                          | 482                                    | 1151                                   | 1670                                   |
| Nominal Output Torque    | N • m            |        | 20              | 11.9                 | 35.9                                   | 74.6                                   | 249                          | 490                                    | 1055                                   | 1574                                   |
|                          |                  |        | 25              | 13.8                 | 43.0                                   | 95.2                                   | 283                          | 473                                    | 1151                                   | 1670                                   |
|                          |                  |        | 30              | 13.8                 | 43.0                                   | 95.2                                   | 283                          | 473                                    | 1151                                   | 1670                                   |
|                          |                  |        | 35              | 13.8                 | 43.0                                   | 95.2                                   | 283                          | 473                                    | 1151                                   | 1670                                   |
|                          |                  |        | 40              | 13.8<br>13.8         | 43.0                                   | 95.2                                   | 283<br>283                   | 473                                    | 1151                                   | 1670                                   |
|                          |                  | 2      | 45<br>50        | 13.8                 | 43.0                                   | 95.2<br>95.2                           | 283                          | 473<br>473                             | 990                                    | 1670<br>1670                           |
|                          |                  |        | 60              | 12.5                 | 39.4                                   | 95.2                                   | 266                          | 436                                    | 1055                                   | 1574                                   |
|                          |                  |        | 70              | 11.9                 | 36.0                                   | 85.6                                   | 219                          | 400                                    | 1055                                   | 1574                                   |
|                          |                  |        | 32.4            | 85.0                 | 216                                    | 363                                    | 860                          | 1184                                   |                                        |                                        |
|                          |                  |        | 90              | 9.8                  | 28.7                                   | 80.0                                   | 210                          | 320                                    | 764                                    | 1185                                   |
|                          |                  |        | 100             | 10.1                 | 25.0                                   | 75.0                                   | 210                          | 320                                    | 763                                    | 1184                                   |
| Emergency Stop Torque    | N • m            |        |                 | (*                   | 3.<br>Max. Output                      | 0 times of No                          | ominal Output<br>=60% of Eme | Torque                                 | Torque)                                |                                        |
| Nominal Input Speed      | rpm              | 1,2    | 3-100           | 3000                 | 3000                                   | 3000                                   | 2500                         | 2000                                   | 2000                                   | 2000                                   |
| Max. Input Speed         | rpm              | 1,2    | 3-100           | 6000                 | 6000                                   | 6000                                   | 5000                         | 4000                                   | 4000                                   | 4000                                   |
|                          |                  | 1      | 3-10            | _                    |                                        |                                        | ≦3                           | ≦ 3                                    | ≦3                                     | ≦ 3                                    |
| Micro Backlash P0        | arcmin           | 1      | 1               |                      | _                                      | _                                      |                              |                                        |                                        |                                        |
|                          |                  | 2      | 12-100          | -                    |                                        |                                        | ≦ 5                          | ≦ 5                                    | ≦ 5                                    | ≦ 5                                    |
| Precision Backlash P1    | arcmin           | 1      | 3-10            | -                    | ≦ 6                                    | ≦ 6                                    | ≦ 5                          | ≦ 5                                    | ≦ 5                                    | ≦ 5                                    |
| Treesieri Baeklasii i I  | Grennin          | 2      | 12-100          | -                    | ≦ 9                                    | ≦ 9                                    | ≦ 7                          | ≦ 7                                    | ≦ 7                                    | ≦ 7                                    |
| Standard Backlash P2     | arcmin           | 1      | 3-10            | ≦ 12                 | ≦ 9                                    | ≦ 9                                    | ≦ 7                          | ≦ 7                                    | ≦7                                     | ≦ 7                                    |
| Standard Backlash P2     | arcillili        | 2      | 12-100          | ≦ 15                 | ≦ 12                                   | ≦ 12                                   | ≦ 9                          | ≦9                                     | ≦ 9                                    | ≦ 9                                    |
| Torsional Rigidity       | N • m<br>/arcmin | 1,2    | 3-100           | 1.0                  | 2.8                                    | 7.5                                    | 15.5                         | 30                                     | 57                                     | 110                                    |
| Max. Radial Load         | N                | 1,2    | 3-100           | 350                  | 960                                    | 1630                                   | 3380                         | 6150                                   | 7260                                   | 11120                                  |
| Max. Axial Load          | N                | 1,2    | 3-100           | 320                  | 900                                    | 1420                                   | 2930                         | 5510                                   | 5550                                   | 8560                                   |
| Operating Temp.          | °C               |        | 3-100           |                      |                                        |                                        | -10 °C ~+90 °                | · C                                    |                                        |                                        |
|                          |                  |        | _               |                      |                                        |                                        |                              |                                        | `                                      |                                        |
| Service Life             | hr               |        | 3-100           |                      |                                        | ∠∪,∪∪∪ (±0,0                           | 000/ Continuo                | us operation                           | )                                      |                                        |
| Efficiency               | %                | 1<br>2 | 3-10<br>12-100  |                      |                                        |                                        | ≧ 96%<br>≧ 92%               |                                        |                                        |                                        |
| NA/ 5 1 :                |                  | 1      | 3-10            | 0.6                  | 1.2                                    | 3.2                                    | 7.5                          | 15.6                                   | 26                                     | 56                                     |
| Weight                   | kg               | 2      | 12-100          | 0.8                  | 1.9/1.5                                | 5.3/3.6                                | 12/8.8                       | 20.7/17.2                              | 36/31                                  | 80/62                                  |
| Mounting Position        | _                | 1,2    | 3-100           | 0.0                  | 5,5                                    | ,                                      | Any direction                |                                        | -0,01                                  | 33,02                                  |
|                          | - IDA (1         | -      | _               |                      |                                        |                                        |                              |                                        | 7.0                                    |                                        |
| Noise Level <sup>2</sup> | dBA/1m           | 1,2    | 3-100           | 60                   | 62                                     | 65                                     | 65                           | 70                                     | 70                                     | 75                                     |
| Protection Class         | -                | 1,2    | 3-100           |                      |                                        |                                        | IP65                         |                                        |                                        |                                        |
| Lubrication              | -                | 1,2    | 3-100           |                      |                                        | .Sı                                    | nthetic Lubric               | ant                                    |                                        |                                        |
| 200110011011             | I                | _,_    | 0 200           | Inert                | ia(J1)                                 |                                        | ,                            |                                        |                                        |                                        |
| Stage                    | Ratio            | ur     | nit             | PGL-42               | PGL-60                                 | PGL-90                                 | PGL-115                      | PGL-142                                | PGL-180                                | PGL-220                                |
| Stage                    |                  | ui     | III             |                      |                                        |                                        |                              |                                        |                                        |                                        |
|                          | 3                |        |                 | 0.03                 | 0.20                                   | 0.81                                   | 2.20                         | 7.89                                   | 25.2                                   | 77.9                                   |
|                          | 1 5              |        |                 | 0.02                 | 0.16                                   | 0.65                                   | 1.80                         | 5.83                                   | 19.8                                   | 56.5                                   |
| 1                        | 5                |        |                 | 0.02                 | 0.15                                   | 0.62                                   | 1.61                         | 5.38                                   | 18.3                                   | 53.3                                   |
|                          | 6/7/8            |        |                 | 0.02                 | 0.14                                   | 0.60                                   | 1.55                         | 5.22                                   | 17.8                                   | 53.0                                   |
|                          | 9/10             | Kg ∙   | cm <sup>2</sup> | 0.02                 | 0.14                                   | 0.60                                   | 1.53                         | 5.20                                   | 17.6                                   | 52.9                                   |
|                          | Ratio            | 1      |                 | PGL-42               | PGL-60(T)                              | PGL-90(T)                              | PGL-115(T)                   | PGL-142(T)                             | PGL-180(T)                             | PGL-220(                               |
| Stage                    |                  | I      |                 |                      |                                        |                                        |                              |                                        |                                        | 53.9(18.3)                             |
|                          |                  |        |                 | ሰሰን                  | 0.15/0.05/                             |                                        |                              |                                        | 18 3/5 30/                             |                                        |
| 15                       | 5/20/25          |        |                 | 0.02                 | 0.15(0.02)                             | 0.62(0.15)                             | 1.61(0.62)                   | 5.38(1.61)                             | 18.3(5.38)                             |                                        |
| 2 30                     |                  |        |                 | 0.02<br>0.02<br>0.02 | 0.15(0.02)<br>0.14(0.02)<br>0.14(0.02) | 0.62(0.15)<br>0.60(0.14)<br>0.60(0.14) | 1.55(0.60)<br>1.53(0.60)     | 5.38(1.61)<br>5.22(1.55)<br>5.20(1.53) | 18.3(5.38)<br>17.8(5.22)<br>17.6(5.20) | 53.9(18.3)<br>53.0(17.8)<br>52.9(17.6) |

Products due to human error, natural disasters or other factors lead to poor or damaged, will not be covered under warranty.

\* The above figures/specifications are subject to change without prior notice.

Series FE

Series Series

Saries

Series

PUR Series

PUL

Z E

Series PGC

PGE

PGF

PGFR

) PG

. 교

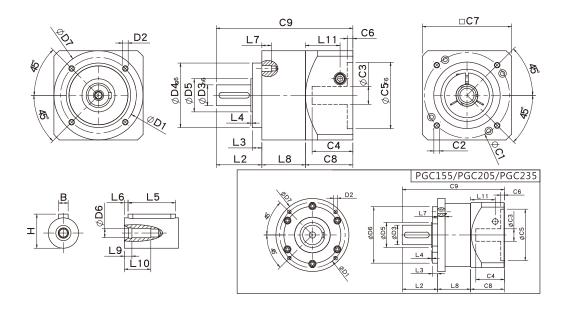
S PEC

î D

۰...

ries C

Ξ. <u>Β</u>

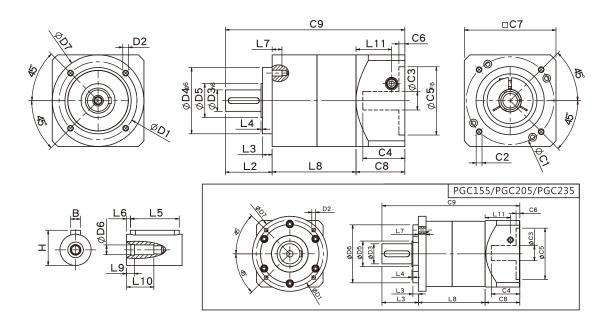

PAE







#### PGC Single Stage Dimensions



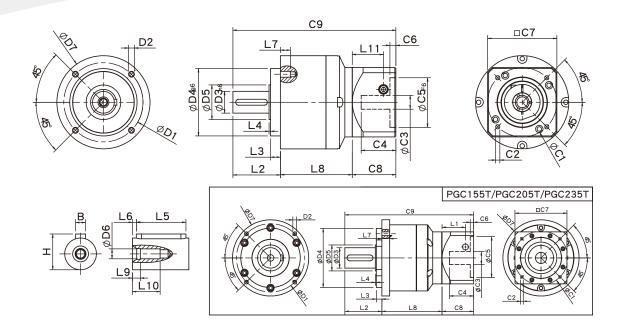

# Specifications

| Dimensions                    | PGC50   | PGC70   | PGC90    | PGC120                   | PGC155   | PGC205      | PGC235      |
|-------------------------------|---------|---------|----------|--------------------------|----------|-------------|-------------|
| D1                            | 44      | 62      | 80       | 108                      | 140      | 184         | 210         |
| D2                            | M4x0.7P | M5x0.8P | M6x1.0P  | M8x1.25P                 | M10x1.5P | M12x1.75P   | M16x2.0P    |
| D3 h6                         | 13      | 16      | 22       | 32                       | 40       | 55          | 75          |
| D4 g6                         | 35      | 52      | 68       | 90                       | 120      | 160         | 180         |
| D5                            | 15      | 25      | 35       | 45                       | 50       | 70          | 90          |
| D6                            | M4x0.7P | M5x0.8P | M8x1.25P | M12x1.75P                | M16x2.0P | M20x2.5P    | M20x2.5P    |
| D7                            | 50      | 70      | 94       | 120                      | 155      | 205         | 235         |
| L2                            | 24.5    | 35      | 48       | 60                       | 93       | 99.5        | 126         |
| L3                            | 4       | 5       | 10       | 6                        | 8        | 15          | 18          |
| L4                            | 1.5     | 1.5     | 1.5      | 3                        | 6        | 2.5         | 3           |
| L5                            | 15      | 25      | 32       | 40                       | 60       | 70          | 90          |
| L6                            | 2       | 2       | 3        | 5                        | 5        | 6           | 7           |
| L7                            | 8       | 10      | 10       | 15                       | 18       | 21          | 32          |
| L8                            | 30      | 38      | 46       | 61                       | 79       | 92.5        | 129.5       |
| L9                            | 4       | 4       | 4.5      | 6                        | 6        | 8           | 7           |
| L10                           | 14      | 16.5    | 20.5     | 30                       | 38       | 48          | 42          |
| L11                           | 24.4    | 31.5    | 36.5     | 42                       | 63       | 69.5        | 102.2       |
| C1 <sup>2</sup>               | 46      | 70      | 90       | 115                      | 145      | 200         | 235         |
| C2 <sup>2</sup>               | M4x0.7P | M5x0.8P | M6x1.0P  | M8x1.25P                 | M8x1.25P | M12x1.75P   | M12x1.75P   |
| C3 <sup>2</sup>               | ≦8      | ≦14     | ≦19/≦24  | <i>≦</i> 24/ <i>≦</i> 28 | ≦35      | <u>≦</u> 50 | <u>≤</u> 55 |
| C4 <sup>2</sup>               | 27      | 35      | 43       | 58                       | 66       | 82          | 98          |
| C5 <sup>2</sup> <sub>F6</sub> | 30      | 50      | 70       | 95                       | 110      | 114.3       | 200         |
| C6 <sup>2</sup>               | 4       | 5       | 5        | 8                        | 6        | 13          | 12          |
| C7 <sup>2</sup>               | 50      | 70      | 94       | 120                      | 140      | 182         | 220         |
| C8 <sup>2</sup>               | 34      | 44      | 50       | 63                       | 80       | 95          | 130         |
| C9 <sup>2</sup>               | 88.5    | 117     | 144      | 184                      | 252      | 287         | 385.5       |
| В                             | 5       | 5       | 6        | 10                       | 12       | 16          | 20          |
| Н                             | 15      | 18      | 24.5     | 35                       | 43       | 59          | 79.5        |

 $<sup>\</sup>star$  C1~C9 are motor specific dimensions(metric std shown ), Size may vary according to the motor flange chosen.

 $<sup>\</sup>bigstar$  Specification subject to change without notice.




# **Specifications**

| Dimensions                    | PGC50   | PGC70   | PGC90    | PGC120                   | PGC155      | PGC205      | PGC235    |
|-------------------------------|---------|---------|----------|--------------------------|-------------|-------------|-----------|
| D1                            | 44      | 62      | 80       | 108                      | 140         | 184         | 210       |
| D2                            | M4x0.7P | M5x0.8P | M6x1.0P  | M8x1.25P                 | M8x1.5P     | M12x1.75P   | M16x2.0P  |
| D3 h6                         | 13      | 16      | 22       | 32                       | 40          | 55          | 75        |
| D4 <sub>g6</sub>              | 35      | 52      | 68       | 90                       | 120         | 160         | 180       |
| D5                            | 15      | 25      | 35       | 45                       | 50          | 70          | 90        |
| D6                            | M4x0.7P | M5x0.8P | M8x1.25P | M12x1.75P                | M16x2.0P    | M20x2.5P    | M20x2.5P  |
| D7                            | 50      | 70      | 94       | 120                      | 155         | 205         | 235       |
| L2                            | 24.5    | 35      | 48       | 60                       | 93          | 99.5        | 126       |
| L3                            | 4       | 5       | 10       | 6                        | 8           | 15          | 18        |
| L4                            | 1.5     | 1.5     | 1.5      | 3                        | 6           | 2.5         | 3         |
| L5                            | 15      | 25      | 32       | 40                       | 60          | 70          | 90        |
| L6                            | 2       | 2       | 3        | 5                        | 5           | 6           | 7         |
| L7                            | 8       | 10      | 10       | 15                       | 18          | 21          | 32        |
| L8                            | 56      | 66      | 86       | 109                      | 140         | 182.5       | 244       |
| L9                            | 4       | 4       | 4.5      | 6                        | 6           | 8           | 7         |
| L10                           | 14      | 16.5    | 20.5     | 30                       | 38          | 48          | 42        |
| L11                           | 24.4    | 31.5    | 36.5     | 42                       | 63          | 69.5        | 102.2     |
| C1 <sup>2</sup>               | 46      | 70      | 90       | 115                      | 145         | 200         | 235       |
| C2 <sup>2</sup>               | M4x0.7P | M5x0.8P | M6x1.0P  | M8x1.25P                 | M8x1.25P    | M12x1.75P   | M12x1.75P |
| C3 <sup>2</sup>               | ≦8      | ≦14     | ≦19/≦24  | <u>≤</u> 24/ <u>≤</u> 28 | <u>≤</u> 35 | <u>≤</u> 50 | ≦55       |
| C4 <sup>2</sup>               | 27      | 35      | 43       | 58                       | 66          | 82          | 98        |
| C5 <sup>2</sup> <sub>F6</sub> | 30      | 50      | 70       | 95                       | 110         | 114.3       | 200       |
| C6 <sup>2</sup>               | 4       | 5       | 5        | 8                        | 6           | 13          | 12        |
| C7 <sup>2</sup>               | 50      | 70      | 94       | 120                      | 140         | 182         | 220       |
| C8 <sup>2</sup>               | 34      | 44      | 50       | 63                       | 80          | 95          | 130       |
| C9 <sup>2</sup>               | 114.5   | 145     | 184      | 232                      | 313         | 377         | 500       |
| В                             | 5       | 5       | 6        | 10                       | 12          | 16          | 20        |
| Н                             | 15      | 18      | 24.5     | 35                       | 43          | 59          | 79.5      |

<sup>★</sup> C1~C9 are motor specific dimensions(metric std shown ), Size may vary according to the motor flange chosen.

 $<sup>\</sup>star$  Specification subject to change without notice.

#### PGC Double Stage Dimensions-2

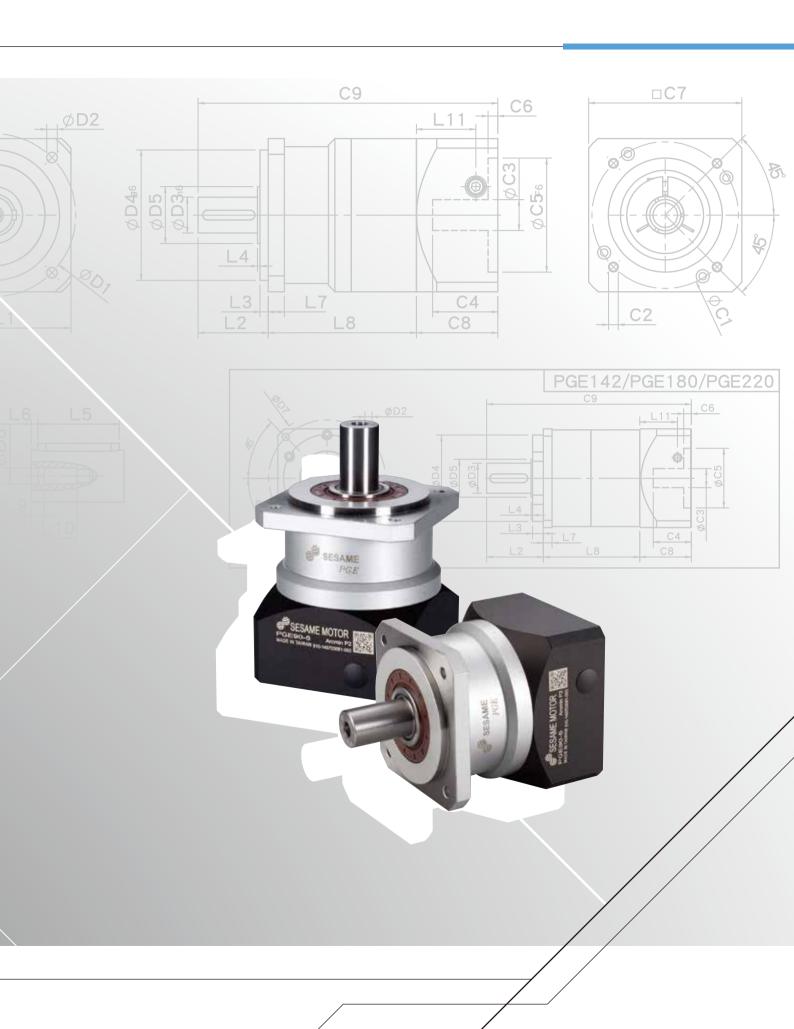


# Specifications

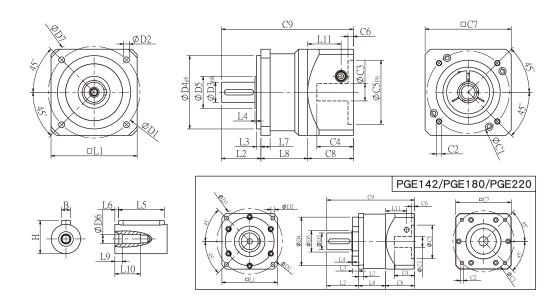
| Dimensions                    | PGC70T  | PGC90T      | PGC120T   | PGC155T                  | PGC205T     | PGC235T     |
|-------------------------------|---------|-------------|-----------|--------------------------|-------------|-------------|
| D1                            | 62      | 80          | 108       | 140                      | 184         | 210         |
| D2                            | M5x0.8P | M6x1.0P     | M8x1.25P  | M10x1.5P                 | M12x1.75P   | M16x2.0P    |
| D3 h6                         | 16      | 22          | 32        | 40                       | 55          | 75          |
| D4 <sub>g6</sub>              | 52      | 68          | 90        | 120                      | 160         | 180         |
| D5                            | 25      | 35          | 45        | 50                       | 70          | 90          |
| D6                            | M5x0.8P | M8x1.25P    | M12x1.75P | M16x2.0P                 | M20x2.5P    | M20x2.5P    |
| D7                            | 70      | 94          | 120       | 155                      | 205         | 235         |
| L2                            | 35      | 48          | 60        | 93                       | 99.5        | 126         |
| L3                            | 5       | 10          | 6         | 8                        | 15          | 18          |
| L4                            | 1.5     | 1.5         | 3         | 6                        | 2.5         | 3           |
| L5                            | 25      | 32.5        | 40        | 60                       | 70          | 90          |
| L6                            | 2       | 3           | 5         | 5                        | 6           | 7           |
| L7                            | 10      | 10          | 15        | 18                       | 21          | 32          |
| L8                            | 60.8    | 70.5        | 99.4      | 127                      | 162         | 211.5       |
| L9                            | 4       | 4.5         | 6         | 6                        | 8           | 7           |
| L10                           | 16.5    | 20.5        | 30        | 38                       | 48          | 42          |
| L11                           | 29      | 35.5        | 40.5      | 42                       | 63          | 69.5        |
| C1 <sup>2</sup>               | 46      | 70          | 90        | 115                      | 145         | 200         |
| C2 <sup>2</sup>               | M4x0.7P | M5x0.8P     | M6x1.0P   | M8x1.25P                 | M8x1.25P    | M12x1.75P   |
| C3 <sup>2</sup>               | ≦8      | <u>≤</u> 14 | ≦19/≦24   | <u>≤</u> 24/ <u>≤</u> 28 | <u>≤</u> 35 | <u>≤</u> 50 |
| C4 <sup>2</sup>               | 28.5    | 41          | 47.75     | 58                       | 66          | 82          |
| C5 <sup>2</sup> <sub>F6</sub> | 30      | 50          | 70        | 95                       | 110         | 114.3       |
| C6 <sup>2</sup>               | 5.5     | 8           | 6         | 8                        | 6           | 13          |
| C7 <sup>2</sup>               | 50      | 70          | 94        | 120                      | 140         | 182         |
| C8 <sup>2</sup>               | 40      | 50          | 55        | 63                       | 80          | 95          |
| C9 <sup>2</sup>               | 135.8   | 170.5       | 214.4     | 283                      | 341.5       | 432.5       |
| В                             | 5       | 6           | 10        | 12                       | 16          | 20          |
| Н                             | 18      | 24.5        | 35        | 43                       | 59          | 79.5        |

 $<sup>\</sup>star$  C1~C9 are motor specific dimensions(metric std shown ), Size may vary according to the motor flange chosen.

 $<sup>\</sup>bigstar$  Specification subject to change without notice.


#### **PGC Specifications Table**

| Specific                 | ations |                  | Stage   | Ratio           | PGC-50     | PGC-70             | PGC-90                      | PGC-120                      | PGC-155                | PGC-205      | PGC-235      |
|--------------------------|--------|------------------|---------|-----------------|------------|--------------------|-----------------------------|------------------------------|------------------------|--------------|--------------|
|                          |        |                  |         | 3               | 13.8       | 44.2               | 95.2                        | 283                          | 482                    | 1151         | 1670         |
|                          |        |                  |         | 4               | 11.9       | 35.9               | 74.6                        | 249                          | 490                    | 1055         | 1574         |
|                          |        |                  | 1       | 5               | 13.8       | 43.0               | 95.2                        | 283                          | 473                    | 1151         | 1670         |
|                          |        |                  |         |                 |            |                    |                             |                              |                        |              |              |
|                          |        |                  |         | 7               | 11.9       | 36.0               | 85.6                        | 219                          | 400                    | 1055         | 1574         |
|                          |        |                  |         | 10              | 10.1       | 25.0               | 75.0                        | 210                          | 320                    | 763          | 1184         |
|                          |        |                  | Stage   | Ratio           | PGC-50     | PGC-70(T)          | PGC-90(T)                   | PGC-120(T)                   | PGC-155(T)             | PGC-205(T)   | PGC-235(T)   |
| Nominal Output To        | raue   | N•m              |         | 15              | 13.8       | 44.2               | 95.2                        | 283                          | 482                    | 1151         | 1670         |
| riominal oatpat ro       | rque   | 10.5111          |         | 20              | 11.9       | 35.9               | 74.6                        | 249                          | 490                    | 1055         | 1574         |
|                          |        |                  |         | 25              | 13.8       | 43.0               | 95.2                        | 283                          | 473                    | 1151         | 1670         |
|                          |        |                  |         | 30              | 13.8       | 43.0               | 95.2                        | 283                          | 473                    | 1151         | 1670         |
|                          |        |                  | 2       | 35              | 13.8       | 43.0               | 95.2                        | 283                          | 473                    | 1151         | 1670         |
|                          |        |                  |         | 40              | 13.8       | 43.0               | 95.2                        | 283                          | 473                    | 1151         | 1670         |
|                          |        |                  |         |                 |            |                    |                             |                              |                        |              |              |
|                          |        |                  |         | 50              | 13.8       | 43.0               | 95.2                        | 283                          | 473                    | 1151         | 1670         |
|                          |        |                  |         | 70              | 11.9       | 36.0               | 85.6                        | 219                          | 400                    | 1055         | 1574         |
|                          |        |                  |         | 100             | 10.1       | 25.0               | 75.0                        | 210                          | 320                    | 763          | 1184         |
| Emergency Stop To        | rque   | N • m            |         |                 | (*         | 3.0<br>Max. Output | times of No<br>Torque T2B : | minal Output<br>=60% of Emer | Torque<br>gency Stop T | orque)       |              |
| Nominal Input Spe        | eed    | rpm              | 1,2     | 3-100           | 3000       | 3000               | 3000                        | 2500                         | 2000                   | 2000         | 2000         |
| Max. Input Spee          | d      | rpm              | 1,2     | 3-100           | 6000       | 6000               | 6000                        | 5000                         | 4000                   | 4000         | 4000         |
|                          |        |                  | 1       | 3-10            | -          | -                  | -                           | ≦3                           | ≦3                     | ≦ 3          | ≦ 3          |
| Micro Backlash P         | 90     | arcmin           | 2       | 12-100          | _          | _                  | -                           | _ 5<br>≦ 5                   | = 5<br>≦ 5             | _ 5<br>≦ 5   | _ 5<br>≦ 5   |
|                          |        |                  | 1       | 3-10            | -          | ≦ 6                | ≦ 6                         | ≦ 5                          | ≦ 5                    | ≦ 5          | ≦ 5          |
| Precision Backlash       | 1 P1   | arcmin           | 2       | 12-100          | -          | ≦ 9                | ≦9                          | ≦ 7                          | ≦7                     | ≦ 7          | ≦ 7          |
| Charadanal Daaldaala     | . D2   |                  | 1       | 3-10            | ≦12        | ≦ 9                | ≦9                          | ≦7                           | ≦7                     | ≦7           | ≦7           |
| Standard Backlash        | 1 PZ   | arcmin           | 2       | 12-100          | ≦ 15       | ≦ 12               | ≦12                         | ≦9                           | ≦9                     | ≦ 9          | ≦ 9          |
| Torsional Rigidit        | У      | N • m<br>/arcmin | 1,2     | 3-100           | 1.0        | 2.8                | 7.5                         | 15.5                         | 30                     | 57           | 110          |
| Max. Bending Mon         | nent   | N • m            | 1,2     | 3-100           | 350        | 960                | 1630                        | 3380                         | 6150                   | 7260         | 11120        |
| Max. Axial Load          | d      | N                | 1,2     | 3-100           | 320        | 900                | 1420                        | 2930                         | 5510                   | 5550         | 8560         |
| Operating Temp           | D      | °C               |         | 3-100           |            |                    | -                           | 10 °C ~+90 °                 |                        |              |              |
| Service Life             |        | hr               |         | 3-100           |            |                    | 20,000 (10,00               | 00/ Continuo                 | us operation)          |              |              |
| Efficiency               |        | %                | 1       | 3-10            |            |                    |                             | ≧ 96%                        |                        |              |              |
| Efficiency               |        |                  | 2       | 12-100          |            |                    |                             | ≧ 92%                        |                        |              |              |
| Meight                   |        | ka               | 1       | 3-10            | 0.7        | 1.4                | 3.0                         | 7.3                          | 15.6                   | 26           | 56           |
| Weight                   |        | kg               | 2       | 12-100          | 0.9        | 2.2/1.7            | 5.0/3.4                     | 11.5/8.5                     | 20.7/17.2              | 36/31        | 80/62        |
| Mounting Position        | on     | -                | 1,2     | 3-100           |            |                    |                             | Any direction                |                        |              |              |
| Noise Level <sup>2</sup> |        | dBA/1m           | 1,2     | 3-100           | 60         | 62                 | 65                          | 65                           | 70                     | 70           | 75           |
| Protection Class         | s      | -                | 1,2     | 3-100           |            |                    |                             | IP65                         |                        |              |              |
| Lubrication              |        | -                | 1,2     | 3-100           |            |                    | Syr                         | nthetic Lubric               | ant                    |              |              |
|                          |        |                  |         | 1               | Inert      | ia(J1)             |                             |                              |                        |              |              |
| Stage                    |        | Ratio            |         | nit             | PGC-50     | PGC-70             | PGC-90                      | PGC-120                      | PGC-155                | PGC-205      | PGC-235      |
| Stage                    |        | 3                | o unit  |                 | 0.03       | 0.20               | 0.81                        | 2.20                         | 7.89                   | 25.2         | 77.9         |
| -                        |        | 4                |         |                 | 0.03       | 0.20               | 0.65                        | 1.80                         | 5.83                   | 19.8         | 56.5         |
| 1                        |        | 5                |         |                 | 0.02       | 0.15               | 0.62                        | 1.61                         |                        | 18.3         | 53.3         |
| *  -                     |        | 7                |         |                 |            |                    |                             |                              | 5.38                   |              |              |
| -                        |        | 10               | Ka •    | cm <sup>2</sup> | 0.02       | 0.14               | 0.60                        | 1.55                         | 5.22                   | 17.8<br>17.6 | 53.0<br>52.9 |
| Stage                    |        | Ratio            | i i i i | C111            | PGC-50     |                    |                             |                              |                        |              |              |
| Stage                    |        |                  |         |                 |            | PGC-70(T)          | PGC-90(T)                   | PGC-120(T)                   | PGC-155(T)             | PGC-205(T)   | PGC-235(1    |
| _                        |        | 7/20/25          |         |                 | 0.02       | 0.15(0.02)         | 0.62(0.15)                  | 1.61(0.62)                   | 5.38(1.61)             | 18.3(5.38)   | 53.9(18.3)   |
| 2                        |        | /35/40           |         |                 | 0.02       | 0.14(0.02)         | 0.60(0.14)                  | 1.55(0.60)                   | 5.22(1.55)             | 17.8(5.22)   | 53.0(17.8)   |
| 50/70/100                |        |                  |         | 0.02            | 0.14(0.02) | 0.60(0.14)         | 1.53(0.60)                  | 5.20(1.53)                   | 17.6(5.20)             | 52.9(17.6)   |              |


Products due to human error, natural disasters or other factors lead to poor or damaged, will not be covered under warranty.

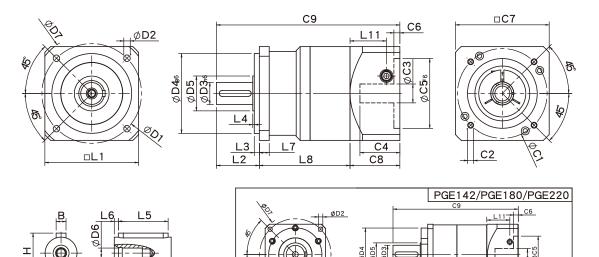






# PGE Single Stage Dimensions




### Specifications

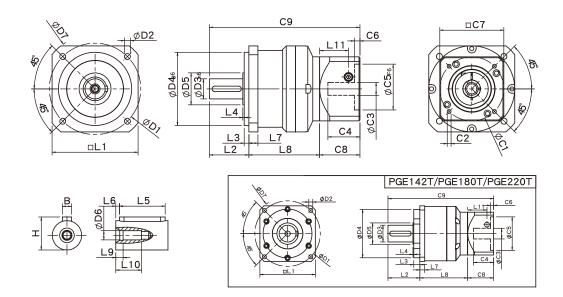
| Dimensions                    | PGE50   | PGE70   | PGE90    | PGE120                   | PGE142   | PGE180    | PGE220    |
|-------------------------------|---------|---------|----------|--------------------------|----------|-----------|-----------|
| D1                            | 50      | 70      | 100      | 130                      | 165      | 215       | 250       |
| D2                            | 3.4     | 6       | 6.5      | 8.5                      | 10.5     | 13        | 17        |
| D3 h6                         | 13      | 16      | 22       | 32                       | 40       | 55        | 75        |
| D4 g6                         | 35      | 50      | 80       | 110                      | 130      | 160       | 180       |
| D5                            | 15      | 25      | 35       | 45                       | 50       | 70        | 90        |
| D6                            | M4x0.7P | M5x0.8P | M8x1.25P | M12x1.75P                | M16x2.0P | M20x2.5P  | M20x2.5P  |
| D7                            | 64      | 90      | 120      | 152                      | 186      | 239       | 292       |
| L1                            | 50      | 70      | 94       | 120                      | 142      | 182       | 220       |
| L2                            | 24.5    | 37      | 43       | 60                       | 93       | 104.5     | 138       |
| L3                            | 4       | 7       | 5        | 6                        | 8        | 20        | 30        |
| L4                            | 1.5     | 1.5     | 1.5      | 3                        | 6        | 2.5       | 3         |
| L5                            | 15      | 25      | 32       | 40                       | 60       | 70        | 90        |
| L6                            | 2       | 2       | 3        | 5                        | 5        | 6         | 7         |
| L7                            | 5       | 6       | 10       | 12                       | 18       | 16        | 20        |
| L8                            | 30      | 36      | 51       | 61                       | 79       | 87.5      | 117.5     |
| L9                            | 4       | 4       | 4.5      | 6                        | 6        | 8         | 7         |
| L10                           | 14      | 16.5    | 20.5     | 30                       | 38       | 48        | 42        |
| L11                           | 24.4    | 31.5    | 36.5     | 42                       | 63       | 69.5      | 102.2     |
| C1 <sup>2</sup>               | 46      | 70      | 90       | 115                      | 145      | 200       | 235       |
| C2 <sup>2</sup>               | M4x0.7P | M5x0.8P | M6x1.0P  | M8x1.25P                 | M8x1.25P | M12x1.75P | M12x1.75P |
| C3 <sup>2</sup>               | ≦8      | ≦14     | ≦19/≦24  | <i>≦</i> 24/ <i>≦</i> 28 | ≦35      | ≦50       | ≦55       |
| C4 <sup>2</sup>               | 27      | 35      | 43       | 58                       | 66       | 82        | 98        |
| C5 <sup>2</sup> <sub>F6</sub> | 30      | 50      | 70       | 95                       | 110      | 114.3     | 200       |
| C6 <sup>2</sup>               | 4       | 5       | 5        | 8                        | 6        | 13        | 12        |
| C7 <sup>2</sup>               | 50      | 70      | 94       | 120                      | 140      | 182       | 220       |
| C8 <sup>2</sup>               | 34      | 44      | 50       | 63                       | 80       | 95        | 130       |
| C9 <sup>2</sup>               | 88.5    | 117     | 144      | 184                      | 252      | 287       | 385.5     |
| В                             | 5       | 5       | 6        | 10                       | 12       | 16        | 20        |
| Н                             | 15      | 18      | 24.5     | 35                       | 43       | 59        | 79.5      |

 $<sup>\</sup>star$  C1~C9 are motor specific dimensions(metric std shown ), Size may vary according to the motor flange chosen.

 $<sup>\</sup>bigstar$  Specification subject to change without notice.

L10




#### Specifications

| Dimensions                    | PGE50   | PGE70       | PGE90    | PGE120                   | PGE142      | PGE180      | PGE220    |
|-------------------------------|---------|-------------|----------|--------------------------|-------------|-------------|-----------|
| D1                            | 50      | 70          | 100      | 130                      | 165         | 215         | 250       |
| D2                            | 3.4     | 6           | 6.5      | 8.5                      | 10.5        | 13          | 17        |
| D3 h6                         | 13      | 16          | 22       | 32                       | 40          | 55          | 75        |
| D4 g6                         | 35      | 50          | 80       | 110                      | 130         | 160         | 180       |
| D5                            | 15      | 25          | 35       | 45                       | 50          | 70          | 90        |
| D6                            | M4x0.7P | M5x0.8P     | M8x1.25P | M12x1.75P                | M16x2.0P    | M20x2.5P    | M20x2.5P  |
| D7                            | 64      | 90          | 120      | 152                      | 186         | 239         | 292       |
| L1                            | 50      | 70          | 94       | 120                      | 142         | 182         | 220       |
| L2                            | 24.5    | 37          | 43       | 60                       | 93          | 104.5       | 138       |
| L3                            | 4       | 7           | 5        | 6                        | 8           | 20          | 30        |
| L4                            | 1.5     | 1.5         | 1.5      | 3                        | 6           | 2.5         | 3         |
| L5                            | 15      | 25          | 32       | 40                       | 60          | 70          | 90        |
| L6                            | 2       | 2           | 3        | 5                        | 5           | 6           | 7         |
| L7                            | 5       | 6           | 10       | 12                       | 18          | 16          | 20        |
| L8                            | 56      | 64          | 91       | 109                      | 140         | 177.5       | 232       |
| L9                            | 4       | 4           | 4.5      | 6                        | 6           | 8           | 7         |
| L10                           | 14      | 16.5        | 20.5     | 30                       | 38          | 48          | 42        |
| L11                           | 24.4    | 31.5        | 36.5     | 42                       | 63          | 69.5        | 102.2     |
| C1 <sup>2</sup>               | 46      | 70          | 90       | 115                      | 145         | 200         | 235       |
| C2 <sup>2</sup>               | M4x0.7P | M5x0.8P     | M6x1.0P  | M8x1.25P                 | M8x1.25P    | M12x1.75P   | M12x1.75P |
| C3 <sup>2</sup>               | ≦8      | <u>≤</u> 14 | ≦19/≦24  | <u>≤</u> 24/ <u>≤</u> 28 | <u>≤</u> 35 | <u>≤</u> 50 | ≦55       |
| C4 <sup>2</sup>               | 27      | 35          | 43       | 58                       | 66          | 82          | 98        |
| C5 <sup>2</sup> <sub>F6</sub> | 30      | 50          | 70       | 95                       | 110         | 114.3       | 200       |
| C6 <sup>2</sup>               | 4       | 5           | 5        | 8                        | 6           | 13          | 12        |
| C7 <sup>2</sup>               | 50      | 70          | 94       | 120                      | 140         | 182         | 220       |
| C8 <sup>2</sup>               | 34      | 44          | 50       | 63                       | 80          | 95          | 130       |
| C9 <sup>2</sup>               | 114.5   | 145         | 184      | 232                      | 313         | 377         | 500       |
| В                             | 5       | 5           | 6        | 10                       | 12          | 16          | 20        |
| Н                             | 15      | 18          | 24.5     | 35                       | 43          | 59          | 79.5      |

 $<sup>\</sup>star$  C1~C9 are motor specific dimensions(metric std shown ), Size may vary according to the motor flange chosen.

<sup>★</sup> Specification subject to change without notice.

### PGE Double Stage Dimensions-2



### Specifications

| Dimensions         | PGE70T     | PGE90T   | PGE120T   | PGE142T                  | PGE180T  | PGE220T     |
|--------------------|------------|----------|-----------|--------------------------|----------|-------------|
| D1                 | 70         | 100      | 130       | 165                      | 215      | 250         |
| D2                 | 6          | 6.5      | 8.5       | 10.5                     | 13       | 17          |
| D3 h6              | 16         | 22       | 32        | 40                       | 55       | 75          |
| D4 g6              | 50         | 80       | 110       | 130                      | 160      | 180         |
| D5                 | 25         | 35       | 45        | 50                       | 70       | 90          |
| D6                 | M5x0.8P    | M8x1.25P | M12x1.75P | M16x2.0P                 | M20x2.5P | M20x2.5P    |
| D7                 | 90         | 120      | 152       | 186                      | 239      | 292         |
| L1                 | 70         | 94       | 120       | 142                      | 182      | 220         |
| L2                 | 37         | 43       | 60        | 93                       | 104.5    | 138         |
| L3                 | 7          | 5        | 6         | 8                        | 20       | 30          |
| L4                 | 1.5        | 1.5      | 3         | 6                        | 2.5      | 3           |
| L5                 | 25         | 32       | 40        | 60                       | 70       | 90          |
| L6                 | 2          | 3        | 5         | 5                        | 6        | 7           |
| L7                 | 6          | 10       | 12        | 18                       | 16       | 20          |
| L8                 | 58.8       | 77.5     | 99.4      | 127                      | 157      | 199.5       |
| L9                 | 4          | 4.5      | 6         | 6                        | 8        | 7           |
| L10                | 16.5       | 20.5     | 30        | 38                       | 48       | 42          |
| L11                | 29         | 35.5     | 40.5      | 42                       | 63       | 69.5        |
| C1 <sup>2</sup>    | 46         | 70       | 90        | 115                      | 145      | 200         |
| C2 <sup>2</sup>    | M4x0.7P    | M5x0.8P  | M6x1.0P   | M8x1.25P                 | M8x1.25P | M12x1.75P   |
| C3 <sup>2</sup>    | <u>≤</u> 8 | ≦14      | ≦19/≦24   | <u>≤</u> 24/ <u>≤</u> 28 | ≦35      | <u>≤</u> 50 |
| C4 <sup>2</sup>    | 28.5       | 41       | 47.75     | 58                       | 66       | 82          |
| C5 <sup>2</sup> F6 | 30         | 50       | 70        | 95                       | 110      | 114.3       |
| C6 <sup>2</sup>    | 5.5        | 8        | 6         | 8                        | 6        | 13          |
| C7 <sup>2</sup>    | 50         | 70       | 94        | 120                      | 140      | 182         |
| C8 <sup>2</sup>    | 40         | 50       | 55        | 63                       | 80       | 95          |
| C9 <sup>2</sup>    | 135.8      | 170.5    | 214.4     | 283                      | 341.5    | 432.5       |
| В                  | 5          | 6        | 10        | 12                       | 16       | 20          |
| Н                  | 18         | 24.5     | 35        | 43                       | 59       | 79.5        |

 $<sup>\</sup>star$  C1~C9 are motor specific dimensions(metric std shown ), Size may vary according to the motor flange chosen.

 $<sup>\</sup>bigstar$  Specification subject to change without notice.

#### **PGE Specifications Table**

| Nominal Cutput Torque   N + M   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Specifica            | tions    |                       | Stage | Ratio           | PGE-50     | PGE-70     | PGE-90        | PGE-120        | PGE-142       | PGE-180    | PGE-220  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|-----------------------|-------|-----------------|------------|------------|---------------|----------------|---------------|------------|----------|
| Nominal Output Torque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |          |                       |       | 3               | 13.8       | 44.2       | 95.2          | 283            | 482           | 1151       | 1670     |
| Nominal Output Torque  |                      |          |                       |       | 4               | 11.9       | 35.9       | 74.6          | 249            | 490           | 1055       | 1574     |
| Nominal Output Torque  Nominal Output Torque Torque  Nominal Output Torque  Nominal Output Torque Torque  Torque Torque  Nominal Output Torque Torque Torque  Torque Torque  Nominal Output Torque Torque  Torque Torque Torque  Nominal Output Torque Torque Torque Torqu  |                      |          |                       | 1     | 5               | 13.8       | 43.0       | 95.2          | 283            | 473           | 1151       | 1670     |
| Nominal Output Torque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |          |                       |       | 7               | 11.9       | 36.0       | 85.6          | 219            | 400           | 1055       | 1574     |
| Nominal Output Torque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |          |                       |       | 10              | 10.1       | 25.0       | 75.0          | 210            | 320           | 763        | 1184     |
| Nominal Output Torque   Nome   Parish   Pari     |                      |          |                       | Stage | Ratio           | PGE-50     | PGE-70(T)  | PGE-90(T)     | PGE-120(T)     | PGE-142(T)    | PGE-180(T) | PGE-220( |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N : 10 : .T          |          | N.1                   |       | 15              | 13.8       | 44.2       | 95.2          | 283            | 482           | 1151       | 1670     |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nominal Output Tor   | que      | N • m                 |       | 20              | 11.9       | 35.9       | 74.6          | 249            | 490           | 1055       | 1574     |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |          |                       |       | 25              | 13.8       | 43.0       | 95.2          | 283            | 473           | 1151       | 1670     |
| Max. Input Speed   N + m   1.2   3-100   6000   6000   5000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000   4000       |                      |          |                       |       | 30              | 13.8       | 43.0       | 95.2          | 283            | 473           | 1151       | 1670     |
| Max. Input Speed   Profession Backlash P2   arcmin   2   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100   12-100    |                      |          |                       | 2     | 35              | 13.8       | 43.0       | 95.2          | 283            | 473           | 1151       | 1670     |
| Femilian    |                      |          |                       |       | 40              | 13.8       | 43.0       | 95.2          | 283            | 473           | 1151       | 1670     |
| N - m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |          |                       |       |                 |            |            |               |                |               |            |          |
| Max. Input Sped   Region       |                      |          |                       |       |                 |            |            |               |                |               |            |          |
| Nominal Input Speed   Primal   1,2   3-100   3000   3000   3000   2500   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   200    |                      |          |                       |       |                 |            |            |               |                |               |            |          |
| Nominal Input Speed   rpm   1,2   3-100   3000   3000   3000   2500   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000      |                      |          |                       |       | 100             | 10.1       |            |               |                |               | 703        | 1104     |
| Max. Input Speed         rpm         1,2         3-100         6000         6000         6000         5000         4000         4000         4000           Micro Backlash PO         arcmin         1         3-10         -         -         -         -         €3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤3         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5         ≤5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Emergency Stop Tor   | que      | N • m                 |       |                 | (*         |            |               |                |               | Torque)    |          |
| Micro Backlash P0 arcmin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Nominal Input Spee   | ed       | rpm                   | 1,2   | 3-100           | 3000       | 3000       | 3000          | 2500           | 2000          | 2000       | 2000     |
| Micro Backlash PU arcmin 1 3-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Max. Input Speed     |          | rpm                   | 1,2   | 3-100           | 6000       | 6000       | 6000          | 5000           | 4000          | 4000       | 4000     |
| Precision Backlash P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Micro Backlash PC    | ,        | arcmin                | 1     | 1               | -          | -          | -             |                |               |            | ≦ 3      |
| Precision Backlash P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WIICIO Dackiasii FC  | <u> </u> | arciiiii              |       |                 |            |            |               |                |               |            |          |
| Standard Backlash P2         arcmin         1         3-10 12-100 515         ≤12 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9         ≤7 ≤7 ≤9 ≤9 ≤9 ≤9 ≤9         ≤9 ≤9 ≤9 ≤9 ≤9 ≤9         ≤9 ≤9 ≤9 ≤9 ≤9 ≤9         ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9         ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9         ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9         ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9         ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9         ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9         ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9         ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9         ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9         ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9         ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9         ≤9 ≤9 ≤9 ≤9 ≤9 ≤9         ≤9 ≤9 ≤9 ≤9 ≤9 ≤9         ≤9 ≤9 ≤9 ≤9 ≤9 ≤9         ≤9 ≤9 ≤9 ≤9 ≤9         ≤9 ≤9 ≤9 ≤9         ≤9          ≤9 €9         ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9          ≤9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Precision Backlash I | 21       | arcmin                |       | 1               |            |            |               |                |               |            |          |
| Standard Backlash P2         arcmin         2         12-100         ≤15         ≤12         ≤12         ≤9         ≤9         ≤9         ≤9           Torsional Rigidity         N ⋅ m / /arcmin         1,2         3-100         1.0         2.8         7.5         15.5         30         57         110           Max. Bending Moment         N ⋅ m / /arcmin         1,2         3-100         350         960         1630         3380         6150         7260         1112           Max. Axial Load         N         1,2         3-100         320         900         1420         2930         5510         5550         8560           Operating Temp.         °C         3-100         20000 (10,0000 / Continuous peration)         1         1         3-100         20000 (10,0000 / Continuous peration)         1         3-100         20000 (10,0000 / Continuous peration)         1         2         20-2000         3-2000         3-2000         3-2000         3-2000         3-2000         3-2000         3-2000         3-2000         3-2000         3-2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |          |                       |       |                 |            |            |               |                |               |            |          |
| Max. Bending Moment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Standard Backlash I  | 2        | arcmin                | 1     | 1               |            |            |               |                |               |            |          |
| Max. Axial Load         N         1,2         3-100         320         900         1420         2930         5510         5550         8560           Operating Temp.         °C         3-100         20,000 (10,000/ Continuous operation)         20,000 (10,000/ Continuous op                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Torsional Rigidity   |          |                       |       |                 |            |            |               |                |               |            | 110      |
| Operating Temp.         °C         3-100         -10 °C ~+90 °C                                                                | Max. Bending Mome    | ent      | N • m                 | 1,2   | 3-100           | 350        | 960        | 1630          | 3380           | 6150          | 7260       | 11120    |
| Service Life         hr         3-100         20,000 (10,000/ Continuous operation)         ≥ 96%         ≥ 96%         ≥ 92%           Weight         kg         1         3-10         0.7         1.4         3.0         7.3         15.6         26         56           Mounting Position         -         1,2         3-100         0.9         2.2/1.7         5.0/3.4         11.5/8.5         20.7/17.2         36/31         80/6           Mounting Position         -         1,2         3-100         60         62         65         65         70         70         75           Protection Class         -         1,2         3-100         60         62         65         65         70         70         75           Lubrication         -         1,2         3-100         Inertia/J1         Synthetic Lubricant           Inertia/J1           Stage         Ratio         unit         PGE-50         PGE-70         PGE-90         PGE-120         PGE-142         PGE-180         PGE-2           4         5         0.02         0.16         0.65         1.80         5.83         19.8         56.5           0.02         0.14 <t< td=""><td>Max. Axial Load</td><td></td><td>N</td><td>1,2</td><td>3-100</td><td>320</td><td>900</td><td>1420</td><td>2930</td><td>5510</td><td>5550</td><td>8560</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Max. Axial Load      |          | N                     | 1,2   | 3-100           | 320        | 900        | 1420          | 2930           | 5510          | 5550       | 8560     |
| Service Life         hr         3-100         20,000 (10,000 / Continuous operation)           Efficiency         %         1         3-10         20,000 (10,000 / Continuous operation)         ≥ 96%         ≥ 92%           Weight         kg         1         3-10         0.7         1.4         3.0         7.3         15.6         26         56           Mounting Position         -         1,2         3-100         0.9         2.2/1.7         5.0/3.4         11.5/8.5         20.7/17.2         36/31         80/6           Mounting Position         -         1,2         3-100         60         62         65         65         70         70         75           Protection Class         -         1,2         3-100         Enertia/U1         Synthetic Lubrication         Synthetic Lubrication         FGE-120         PGE-142         PGE-180         PGE-2           Stage         Ratio         unit         PGE-50         PGE-70         PGE-90         PGE-120         PGE-142         PGE-180         PGE-2           1         5         0.02         0.16         0.65         1.80         5.83         19.8         56.5           1         5         0.02         0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Operating Temp.      |          | °C                    |       | 3-100           |            |            | _             | 10 °C ~+90 °C  | C             |            |          |
| Efficiency % 1 3-10 2 12-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |          | hr                    |       | 3-100           |            |            | 20,000 (10,00 | 00/ Continuo   | us operation) |            |          |
| Weight         kg         1         3-10 o.7         1.4 o.9         3.0 o.9         2.2/1.7 o.9         5.0/3.4 o.9         11.5/8.5 o.07/17.2 o.07/17.2 o.06/31 o.06/60         56 o.06           Mounting Position         -         1.2 o.06         3-100 o.09         2.2/1.7 o.0/3.4 o.06         1.5/8.5 o.07/17.2 o.07/17.2 o.06/31 o                                                                                                                                                                                 | F.(C; -;             |          | 0/                    | 1     | 3-10            |            |            | , , ,         |                |               |            |          |
| Weight         kg         2         12-100         0.9         2.2/1.7         5.0/3.4         11.5/8.5         20.7/17.2         36/31         80/6           Mounting Position         -         1,2         3-100         60         62         65         65         70         70         75           Protection Class         -         1,2         3-100         60         62         65         65         70         70         75           Lubrication         -         1,2         3-100         Synthetic Lubricant         IP65         IP66         IP66         IP66         IP66         IP65         IP66         IP6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Efficiency           |          | %                     | 2     | 12-100          |            |            |               | ≧ 92%          |               |            |          |
| Mounting Position         -         1,2         3-100         -         Any direction           Noise Level 2 dBA/1m         1,2         3-100         60         62         65         65         70         70         75           Protection Class         -         1,2         3-100         Synthetic Lubricant           Lubrication         -         1,2         3-100         Synthetic Lubricant           Stage         Ratio         unit         PGE-50 PGE-70 PGE-90 PGE-120 PGE-142 PGE-180 PGE-18         PGE-2           4         0.03         0.20         0.81         2.20         7.89         25.2         77.9           0.02         0.16         0.65         1.80         5.83         19.8         56.5           1         5         0.02         0.15         0.62         1.61         5.38         18.3         53.3           7         0.02         0.14         0.60         1.55         5.22         17.8         53.0           Stage         Ratio         PGE-50 PGE-70(T) PGE-90(T) PGE-90(T) PGE-120(T) PGE-120(T) PGE-120(T) PGE-180(T) PGE-120(T) PGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Weight               |          | ka                    | 1     | 3-10            | 0.7        |            | 3.0           |                | 15.6          | 26         | 56       |
| Noise Level 2 Protection Class         dBA/1m         1,2 1,2 3-100         60 62 65 65 65 70         70 70 75         75           Protection Class         - 1,2 3-100         Synthetic Lubricant           Lubrication - 1,2 3-100         Synthetic Lubricant           Inertia(J1)           Stage         Ratio         unit         PGE-50 PGE-70 PGE-90 PGE-120 PGE-142 PGE-180 PGE-2         PGE-180 PGE-2           3         0.03 0.20 0.16 0.65 1.80 5.83 19.8 56.5         5.22 77.9         56.5           4         0.02 0.15 0.62 1.61 5.38 18.3 53.3         53.3         53.3           5         0.02 0.14 0.60 1.55 5.22 17.8 53.0         50.0 17.6 52.9         52.9           Stage         Ratio         PGE-70(T) PGE-90(T) PGE-120(T) PGE-142(T) PGE-180(T) PGE-22         60.02 0.15(0.02) 0.62(0.15) 1.61(0.62) 5.38(1.61) 18.3(5.38) 53.9(18         53.9(18           2         30/35/40         0.02 0.14(0.02) 0.60(0.14) 1.55(0.60) 5.22(1.55) 17.8(5.22) 53.0(17         53.0(17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |          |                       | i     |                 | 0.9        | 2.2/1.7    |               | -              |               | 36/31      | 80/62    |
| Protection Class - 1,2 3-100 Synthetic Lubricant    Ip65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | ו        | -                     |       |                 |            |            |               |                |               |            |          |
| Lubrication         -         1,2         3-100         Synthetic Lubricant           Stage         Ratio         unit         PGE-50         PGE-90         PGE-120         PGE-180         PGE-2           3         0.03         0.20         0.81         2.20         7.89         25.2         77.9           0.02         0.16         0.65         1.80         5.83         19.8         56.5           0.02         0.15         0.62         1.61         5.38         18.3         53.3           0.02         0.14         0.60         1.55         5.22         17.8         53.0           0.02         0.14         0.60         1.53         5.20         17.6         52.9           Stage         Ratio         PGE-50         PGE-70(T)         PGE-90(T)         PGE-120(T)         PGE-142(T)         PGE-180(T)         PGE-22           0.02         0.15(0.02)         0.62(0.15)         1.61(0.62)         5.38(1.61)         18.3(5.38)         53.9(18)           2         30/35/40         0.02         0.14(0.02)         0.60(0.14)         1.55(0.60)         5.22(1.55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | С        | dBA/1m                |       |                 | 60         | 62         | 65            |                | 70            | 70         | 75       |
| Stage   Ratio   unit   PGE-50   PGE-70   PGE-90   PGE-120   PGE-142   PGE-180   PGE-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |          | -                     |       |                 |            |            |               | IP65           |               |            |          |
| Stage         Ratio         unit         PGE-50         PGE-70         PGE-90         PGE-120         PGE-142         PGE-180         PGE-2           1         3         0.03         0.20         0.81         2.20         7.89         25.2         77.9           0.02         0.16         0.65         1.80         5.83         19.8         56.5           0.02         0.15         0.62         1.61         5.38         18.3         53.3           0.02         0.14         0.60         1.55         5.22         17.8         53.0           10         Kg • cm²         0.02         0.14         0.60         1.55         5.22         17.6         52.9           Stage         Ratio         PGE-50         PGE-70(T)         PGE-90(T)         PGE-120(T)         PGE-142(T)         PGE-180(T)         PGE-22           0.02         0.15(0.02)         0.62(0.15)         1.61(0.62)         5.38(1.61)         18.3(5.38)         53.9(18           2         30/35/40         0.02         0.14(0.02)         0.60(0.14)         1.55(0.60)         5.22(1.55)         17.8(5.22)         53.0(17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lubrication          |          | -                     | 1,2   | 3-100           |            |            | Syr           | nthetic Lubric | ant           |            |          |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |          |                       |       |                 | Inert      | ia(J1)     |               |                |               |            |          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stage                | Rati     | 0                     | ur    | nit             | PGE-50     | PGE-70     | PGE-90        | PGE-120        | PGE-142       | PGE-180    | PGE-220  |
| 1 5 0.02 0.15 0.62 1.61 5.38 18.3 53.3 53.3 53.0 10.02 0.14 0.60 1.55 5.22 17.8 53.0 0.02 0.14 0.60 1.55 5.22 17.8 53.0 0.02 0.14 0.60 1.55 5.22 17.8 53.0 0.02 0.14 0.60 1.55 5.20 17.6 52.9 0.02 0.14 0.60 1.55 5.20 17.6 52.9 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0.02 0.15 0 |                      |          |                       |       |                 | 0.03       | 0.20       | 0.81          | 2.20           | 7.89          | 25.2       | 77.9     |
| 7         0.02         0.14         0.60         1.55         5.22         17.8         53.0           Stage         Ratio         PGE-50         PGE-70(T)         PGE-90(T)         PGE-120(T)         PGE-142(T)         PGE-180(T)         PGE-22           0.02         0.15(0.02)         0.62(0.15)         1.61(0.62)         5.38(1.61)         18.3(5.38)         53.9(18)           2         30/35/40         0.02         0.14(0.02)         0.60(0.14)         1.55(0.60)         5.22(1.55)         17.8(5.22)         53.0(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |          |                       |       |                 |            |            |               |                |               |            | 56.5     |
| 10   Kg • cm²   0.02   0.14   0.60   1.53   5.20   17.6   52.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                    |          |                       |       |                 |            |            |               |                |               |            | 53.3     |
| Stage         Ratio         PGE-50         PGE-70(T)         PGE-90(T)         PGE-120(T)         PGE-142(T)         PGE-180(T)         PGE-22           15/20/25         0.02         0.15(0.02)         0.62(0.15)         1.61(0.62)         5.38(1.61)         18.3(5.38)         53.9(18)           2         30/35/40         0.02         0.14(0.02)         0.60(0.14)         1.55(0.60)         5.22(1.55)         17.8(5.22)         53.0(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>             |          |                       | V~ -  | cm <sup>2</sup> |            |            |               |                |               |            |          |
| 15/20/25 0.02 0.15(0.02) 0.62(0.15) 1.61(0.62) 5.38(1.61) 18.3(5.38) 53.9(18<br>2 30/35/40 0.02 0.14(0.02) 0.60(0.14) 1.55(0.60) 5.22(1.55) 17.8(5.22) 53.0(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stage                |          |                       | kg •  | kg • cm²        |            |            |               |                |               |            |          |
| 2 30/35/40 0.02 0.14(0.02) 0.60(0.14) 1.55(0.60) 5.22(1.55) 17.8(5.22) 53.0(17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stage                |          |                       |       |                 |            |            |               |                |               |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,  -                 |          |                       |       |                 |            |            |               |                |               |            |          |
| 507/07/00     0.07 0.14/0.07\ 0.50/0.14\ 1.52/0.60\ 6.70/1.53\ 17.6/6.20\ 63.0/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                    |          | 30/35/40<br>50/70/100 |       | 0.02            | 0.14(0.02) | 0.60(0.14) | 1.53(0.60)    | 5.22(1.55)     | 17.6(5.22)    | 53.0(17.8  |          |

X The above figures/specifications are subject to change without prior notice.

Products due to human error, natural disasters or other factors lead to poor or damaged, will not be covered under warranty.

Series Series

Series

PGH

PUR

PUL

PGE

S F

PGF

PEL

S PEC

Ser. PE


s --

Ξ. B

PAE Series



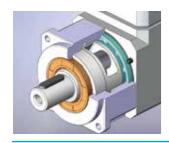




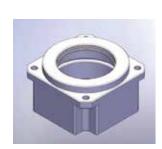
Planetary arm bracket and output shaft are one-piece constructed, setting bearing apart for larger span to reach the largest reverse rigid and contribute high axis radial load capacity.



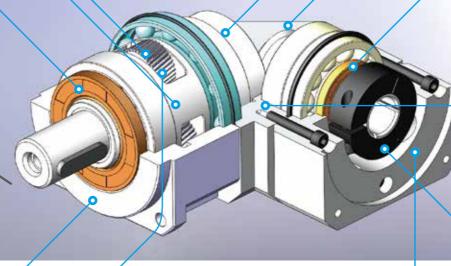
Alloy steel gear with unique heat treatment.


Additionally, with gear grinding processing to get the best accuracy, high wear resistance and high impact toughness.




The sun gear bearing is placed directly into the planetary arm bracket, the overall mechanical structure designed to ensure concentricity of the transmission components.




Alloy steel spiral bevel gears selected after hobbing and heat treatment to ensure high accuracy of the engagement point, low backlash and low noise.



Grinding process to smooth surface of output shaft, and with oil seal to minimum friction coefficient and reducing start up load; result in the best seal-ability and extended lifespan.



Advanced electroless nickel plating surface treatment resists scratch and corrosion. Suitable for stringent require of high-tech equipment. The gearbox and internal gear ring are one-piece constructed, and then processed with advanced Germany gear shaper machinery for high precision, high torque and abrade consumption.



PGRH series overall design suitable for combination operation with servo motor high speed input and achieves maximum torque output. Precision gear design and gear processing, create a low backlash operation, high efficiency, low noise and planetary gear.

needle bearings, full needle roller bearing

aligned without retainer achieve maximum

exposure but smallest gap tolerances. Enhance

over-all gear structure rigid and output torque.



Advanced motor bracket design coupled with the input shaft bushing is easy to mount to any servo or stepper motor.

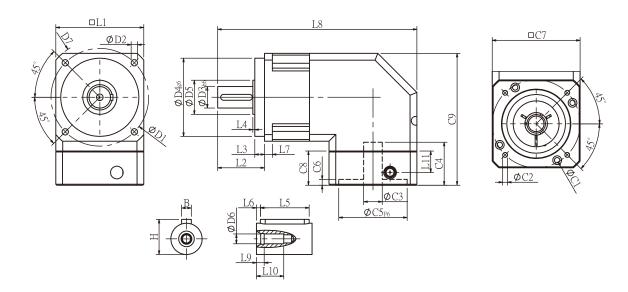


Input-end and motor shaft are coupled



High-tech oil seal design on the upper lip guard against dust intruder, lower lip guard against oil leak. Protection grade IP65 safeguards fully avoid leaking problem, and given it maintenance free.



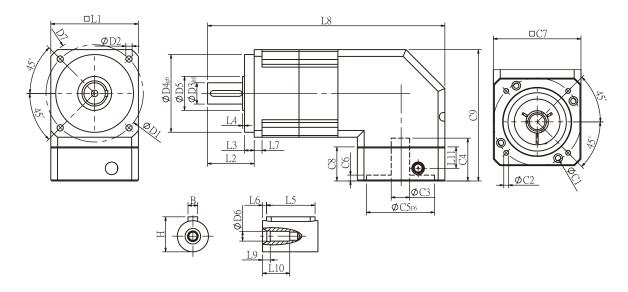

Right angular gear box processed by precision CNC equipment to obtain the highest combination with spiral bevel gears. Advanced electroless nickel plating surface treatment resists scratch and corrosion. Suitable for stringent require of high-tech equipment.

through a dynamic balanced collar clamping mechanism to ensure connection interface concentricity and zero slip power transmission at high speed.

Products due to human error, natural disasters or other factors lead to poor or damaged, will not be covered under warranty.

www.sesamemotor.com

# PGRH Single Stage Dimensions



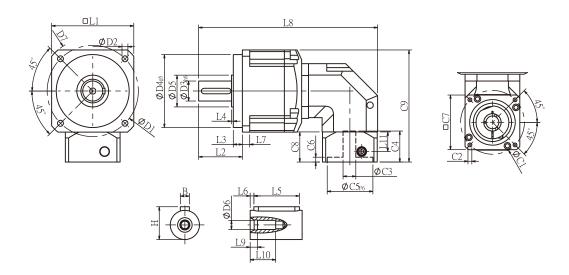

# Specifications

| Dimensions         | PGRH42  | PGRH60  | PGRH90   | PGRH115                  | PGRH142  |
|--------------------|---------|---------|----------|--------------------------|----------|
| D1                 | 50      | 70      | 100      | 130                      | 165      |
| D2                 | 3.4     | 5.5     | 6.5      | 8.5                      | 10.5     |
| D3 h6              | 13      | 16      | 22       | 32                       | 40       |
| D4 g6              | 35      | 50      | 80       | 110                      | 130      |
| D5                 | 15      | 25      | 35       | 45                       | 50       |
| D6                 | M4x0.7P | M5x0.8P | M8x1.25P | M12x1.75P                | M16x2P   |
| D7                 | 56      | 80      | 118      | 148                      | 186      |
| L1                 | 42.6    | 60      | 90       | 115                      | 142      |
| L2                 | 26      | 37      | 48       | 63                       | 91.5     |
| L3                 | 5.5     | 7       | 10       | 10                       | 10       |
| L4                 | 1.5     | 1.5     | 1.5      | 3.5                      | 3.5      |
| L5                 | 15      | 25      | 32       | 40                       | 60       |
| L6                 | 2       | 2       | 3        | 5                        | 5        |
| L7                 | 4       | 6       | 8        | 12                       | 18       |
| L8                 | 103.6   | 148.2   | 204      | 246.5                    | 325      |
| L9                 | 4       | 4       | 4.5      | 6                        | 6        |
| L10                | 14      | 16.5    | 20.5     | 30                       | 38       |
| L11                | 13.5    | 21.5    | 22       | 32                       | 44.7     |
| C1 <sup>2</sup>    | 46      | 70      | 90       | 115                      | 145      |
| C2 <sup>2</sup>    | M4x0.7P | M5x0.8P | M6x1P    | M8x1.25P                 | M8x1.25P |
| C3 <sup>2</sup>    | ≦8      | ≦14     | ≦19/≦24  | <u>≤</u> 24/ <u>≤</u> 28 | ≦35      |
| C4 <sup>2</sup>    | 29      | 34      | 44       | 53                       | 76       |
| C5 <sup>2</sup> F6 | 30      | 50      | 70       | 95                       | 110      |
| C6 <sup>2</sup>    | 6       | 5       | 5        | 6                        | 9        |
| C7 <sup>2</sup>    | 42.6    | 60      | 90       | 115                      | 140      |
| C8 <sup>2</sup>    | 25      | 33      | 35       | 48                       | 65       |
| C9 <sup>2</sup>    | 70.8    | 107.8   | 135      | 174.5                    | 207      |
| В                  | 5       | 5       | 6        | 10                       | 12       |
| Н                  | 15      | 18      | 24.5     | 35                       | 43       |

 $<sup>\</sup>bigstar \ \text{C1} \sim \text{C9 are motor specific dimensions(metric std shown ), Size may vary according to the motor flange chosen.}$ 

 $<sup>\</sup>bigstar$  Specification subject to change without notice.




### Specifications

| Dimensions         | PGRH42  | PGRH60  | PGRH90   |
|--------------------|---------|---------|----------|
| D1                 | 50      | 70      | 100      |
| D2                 | 3.4     | 5.5     | 6.5      |
| D3 h6              | 13      | 16      | 22       |
| D4 g6              | 35      | 50      | 80       |
| D5                 | 15      | 25      | 35       |
| D6                 | M4x0.7P | M5x0.8P | M8x1.25P |
| D7                 | 56      | 80      | 118      |
| L1                 | 42.6    | 60      | 90       |
| L2                 | 26      | 37      | 48       |
| L3                 | 5.5     | 7       | 10       |
| L4                 | 1.5     | 1.5     | 1.5      |
| L5                 | 15      | 25      | 32       |
| L6                 | 2       | 2       | 3        |
| L7                 | 4       | 6       | 8        |
| L8                 | 130.6   | 181.2   | 248      |
| L9                 | 4       | 4       | 4.5      |
| L10                | 14      | 16.5    | 20.5     |
| L11                | 13.5    | 21.5    | 22       |
| C1 <sup>2</sup>    | 46      | 70      | 90       |
| C2 <sup>2</sup>    | M4x0.7P | M5x0.8P | M6x1.0P  |
| C3 <sup>2</sup>    | ≦8      | ≦14     | ≦19/≦24  |
| C4 <sup>2</sup>    | 29      | 34      | 44       |
| C5 <sup>2</sup> F6 | 30      | 50      | 70       |
| C6 <sup>2</sup>    | 6       | 5       | 5        |
| C7 <sup>2</sup>    | 42.6    | 60      | 90       |
| C8 <sup>2</sup>    | 25      | 33      | 35       |
| C9 <sup>2</sup>    | 70.8    | 107.8   | 135      |
| В                  | 5       | 5       | 6        |
| Н                  | 15      | 18      | 24.5     |

<sup>★</sup> C1~C9 are motor specific dimensions(metric std shown ), Size may vary according to the motor flange chosen.

 $<sup>\</sup>star$  Specification subject to change without notice.

# PGRH Double Stage Dimensions-2

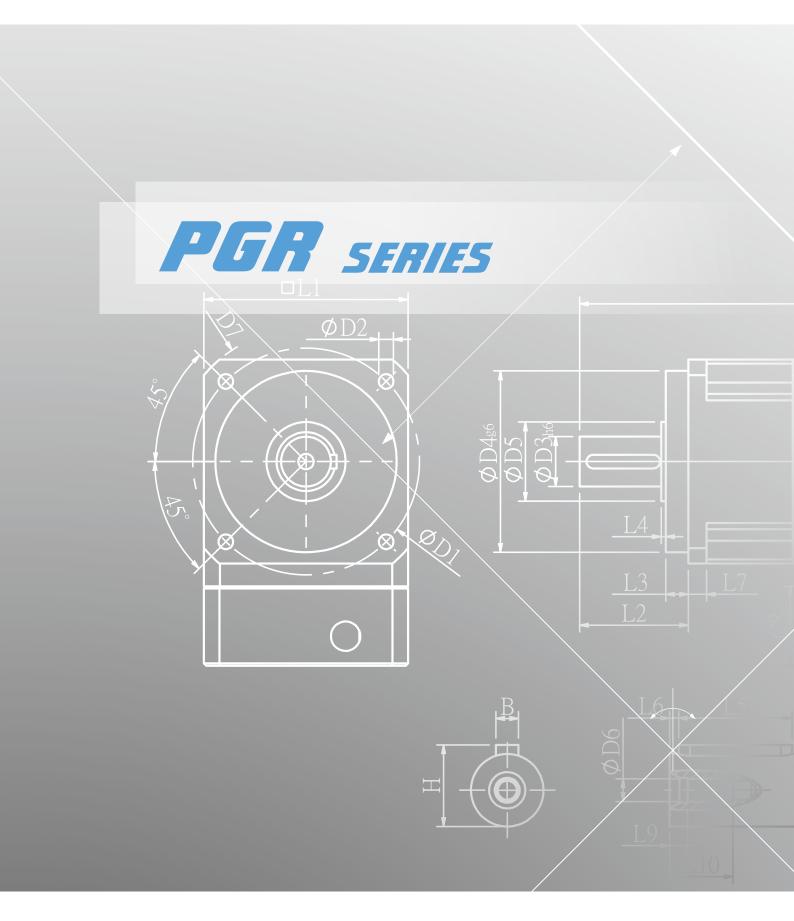


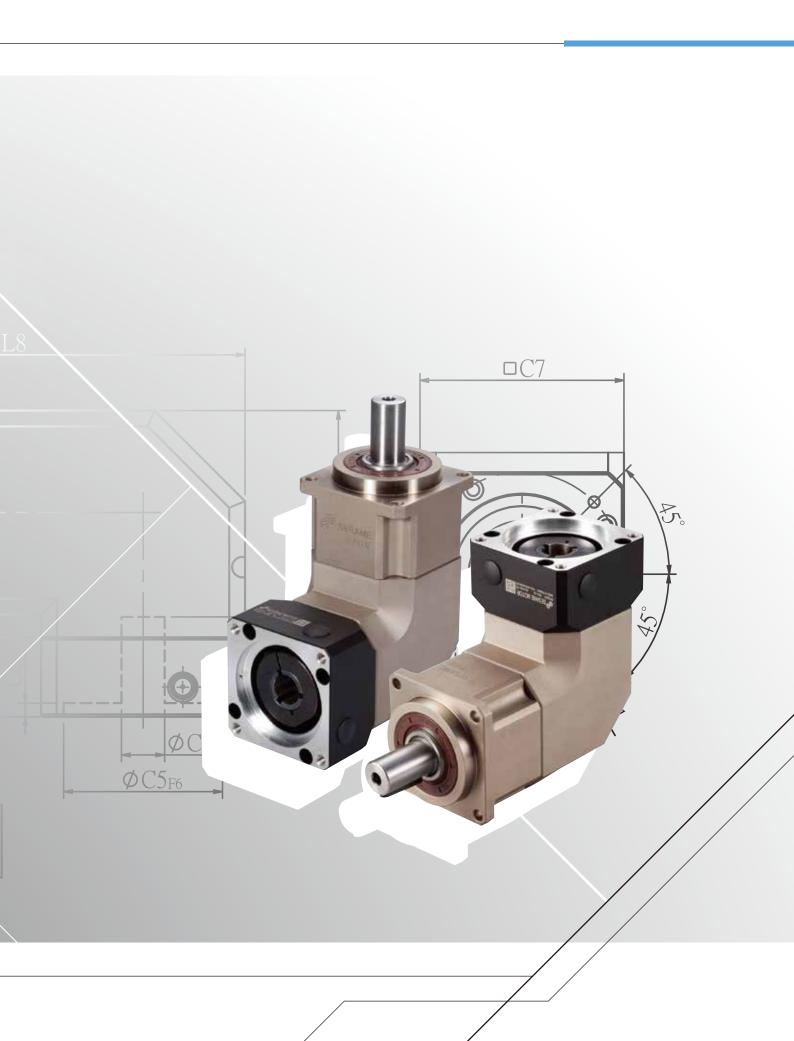
### Specifications

| Dimensions         | PGRH60T | PGRH90T     | PGRH115T  | PGRH142T    | PGRH180T    | PGRH220T |
|--------------------|---------|-------------|-----------|-------------|-------------|----------|
| D1                 | 70      | 100         | 130       | 165         | 215         | -        |
| D2                 | 5.5     | 6.5         | 8.5       | 10.5        | 13          | -        |
| D3 h6              | 16      | 22          | 32        | 40          | 55          | -        |
| D4 g6              | 50      | 80          | 110       | 130         | 160         | -        |
| D5                 | 25      | 35          | 45        | 50          | 70          | -        |
| D6                 | M5x0.8P | M8x1.25P    | M12x1.75P | M16x2.0P    | M20x2.5P    | -        |
| D7                 | 80      | 118         | 148       | 186         | 239         | -        |
| L1                 | 60      | 90          | 115       | 142         | 182         | -        |
| L2                 | 37      | 48          | 63        | 91.5        | 100.5       | -        |
| L3                 | 7       | 10          | 10        | 10          | 16          | -        |
| L4                 | 1.5     | 1.5         | 3         | 6           | 2.5         | -        |
| L5                 | 25      | 32          | 40        | 60          | 70          | -        |
| L6                 | 2       | 3           | 5         | 5           | 6           | -        |
| L7                 | 6       | 8           | 11        | 16          | 18          | -        |
| L8                 | 151.8   | 200.7       | 272.5     | 345.5       | 424.5       | -        |
| L9                 | 4       | 4.5         | 6         | 6           | 8           | -        |
| L10                | 16.5    | 20.5        | 30        | 38          | 48          | -        |
| L11                | 13.5    | 21.5        | 22        | 32          | 44.7        | -        |
| C1 <sup>2</sup>    | 46      | 70          | 90        | 115         | 145         | -        |
| C2 <sup>2</sup>    | M4x0.7P | M5x0.8P     | M6x1.0P   | M8x1.25P    | M8x1.25P    | -        |
| C3 <sup>2</sup>    | ≦8      | <u>≤</u> 14 | ≦19/≦24   | <u>≤</u> 24 | <u>≤</u> 35 | -        |
| C4 <sup>2</sup>    | 29      | 34          | 44        | 53          | 76          | -        |
| C5 <sup>2</sup> F6 | 30      | 50          | 70        | 95          | 110         | -        |
| C6 <sup>2</sup>    | 6       | 5           | 5         | 6           | 9           | -        |
| C7 <sup>2</sup>    | 42.6    | 60          | 90        | 115         | 140         | -        |
| C8 <sup>2</sup>    | 25      | 33          | 35        | 48          | 65          | -        |
| C9 <sup>2</sup>    | 79.5    | 122.8       | 147.5     | 188         | 207         | -        |
| В                  | 5       | 6           | 10        | 12          | 16          | -        |
| Н                  | 18      | 24.5        | 35        | 43          | 59          | -        |

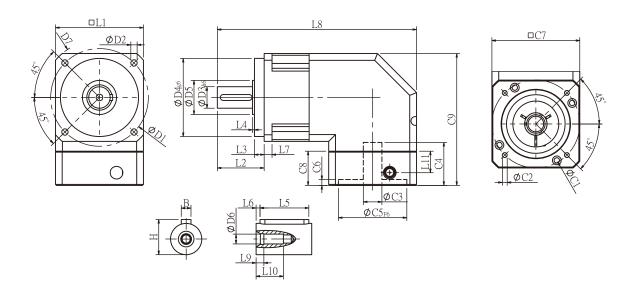
 $<sup>\</sup>bigstar \ \text{C1} \sim \text{C9 are motor specific dimensions(metric std shown ), Size may vary according to the motor flange chosen.}$ 

 $<sup>\</sup>bigstar$  Specification subject to change without notice.


### PGRH Specifications Table


| Specifi           | ications |                           | Stage | Ratio    | PGRH-42         | PGRH-60                  | PGRH-90                        | PGRH-115                     | PGRH-142     | PGRH-180     | PGRH-220     |
|-------------------|----------|---------------------------|-------|----------|-----------------|--------------------------|--------------------------------|------------------------------|--------------|--------------|--------------|
|                   |          |                           |       | 3        | 19              | 53                       | 145                            | 290                          | 520          | 950          | 1550         |
|                   |          |                           |       | 5        | 20<br>17        | 55<br>54                 | 150<br>140                     | 300                          | 550          | 1000<br>1050 | 1650         |
|                   |          |                           |       | 6        | 15              | 46                       | 135                            | 290<br>280                   | 530<br>490   | 1000         | 1700<br>1600 |
|                   |          |                           |       | 7        | 14              | 44                       | 125                            | 270                          | 450          | 960          | 1500         |
|                   |          |                           | 1     | 8        | 12              | 41                       | 110                            | 240                          | 390          | 900          | 1350         |
|                   |          |                           |       | 9        | 11              | 37                       | 95                             | 220                          | 360          | 800          | 1250         |
|                   |          |                           |       | 10<br>14 | 11<br>14        | 37<br>44                 | 95<br>125                      | 220<br>270                   | 360<br>450   | 800<br>960   | 1250<br>1500 |
|                   |          |                           |       | 20       | 11              | 37                       | 95                             | 220                          | 360          | 800          | 1250         |
|                   |          |                           | Stage | Ratio    |                 |                          | PGRH-90(T)                     | PGRH-115(T)                  |              |              | PGRH-220T    |
|                   |          |                           |       | 15       | 19              | 53                       | 145                            | 290                          | 520          | 950          | 1550         |
| Nominal Output To | orque    | N•m                       |       | 20       | 20              | 55                       | 150                            | 300                          | 550          | 1000         | 1650         |
|                   |          |                           |       | 25<br>30 | 17<br>17        | 54<br>54                 | 140<br>140                     | 290<br>290                   | 530<br>530   | 1050<br>1050 | 1700<br>1700 |
|                   |          |                           |       | 35       | 17              | 54                       | 140                            | 290                          | 530          | 1050         | 1700         |
|                   |          |                           |       | 40       | 17              | 54                       | 140                            | 290                          | 530          | 1050         | 1700         |
|                   |          |                           | 2     | 45       | 17              | 54                       | 140                            | 290                          | 530          | 1050         | 1700         |
|                   |          |                           |       | 50       | 17              | 54                       | 140                            | 290                          | 530          | 1050         | 1700         |
|                   |          |                           |       | 60       | 15              | 46                       | 135                            | 280                          | 490          | 1000         | 1600         |
|                   |          |                           |       | 70       | 14              | 44                       | 125                            | 270                          | 450          | 960          | 1500         |
|                   |          |                           |       | 90       | 12<br>11        | 41<br>37                 | 110<br>95                      | 240<br>220                   | 390<br>360   | 900<br>800   | 1350<br>1250 |
|                   |          |                           |       | 100      | 11              | 37                       | 95                             | 220                          | 360          | 800          | 1250         |
|                   |          |                           |       | 120      | 15              | 46                       | 135                            | 280                          | 490          | 1000         | 1600         |
|                   |          |                           |       | 140      | 14              | 44                       | 125                            | 270                          | 450          | 960          | 1500         |
|                   |          |                           |       | 160      | 12              | 41                       | 110                            | 240                          | 390          | 900          | 1350         |
|                   |          |                           |       | 180      | 11              | 37                       | 95                             | 220                          | 360          | 800          | 1250         |
|                   |          |                           |       | 200      | 11              | 37                       | 95                             | 220                          | 360          | 800          | 1250         |
| Emergency Stop To | orque    | N • m                     |       |          | (*              | Max. Outpu               | .0 times of No<br>t Torque T2B | ominal Output<br>=60% of Eme | rgency Stop  | Torque)      |              |
| Nominal Input Sp  | peed     | rpm                       | 1,2   | 3-200    | 5000            | 5000                     | 4000                           | 4000                         | 3000         | 3000         | 2000         |
| Max. Input Spe    | ed       | rpm                       | 1,2   | 3-200    | 10000           | 10000                    | 8000                           | 8000                         | 6000         | 6000         | 4000         |
| NAT D I I I-      | DO       |                           | 1     | 3-20     | -               | -                        | ≦ 3                            | ≦ 2                          | ≦ 2          | ≦ 2          | ≦ 2          |
| Micro Backlash    | PU       | arcmin                    | 2     | 15-200   | -               | =                        | ≦ 5                            | <b>≦</b> 4                   | ≦4           | <b>≦</b> 4   | ≦4           |
|                   | . 54     |                           | 1     | 3-20     | ≦ 5             | ≦ 5                      | ≦ 5                            | ≦4                           | ≦4           | ≦ 4          | ≦4           |
| Precision Backlas | in PI    | arcmin                    | 2     | 15-200   | <u>≤</u> 7      | ≦7                       | ≦ 7                            | ≦ 7                          | ≦ 7          | ≦ 7          | ≦ 7          |
|                   |          |                           | 1     | 3-20     | ≦7              | ≦ 7                      | ≦7                             | ≦ 6                          | ≦ 6          | ≦ 6          | ≦ 6          |
| Standard Backlas  | sh P2    | arcmin                    | 2     | 15-200   | <u>≦</u> 9      | ≦9                       | ≦ 9                            | ≦ 9                          | ≦ 9          | ≦ 9          | ≦ 9          |
| Torsional Rigid   | ity      | N • m<br>/arcmin          | 1,2   | 3-100    | 2.5             | 6                        | 12                             | 23                           | 45           | 75           | 130          |
| Max. Radial Loa   | ad       | N                         | 1,2   | 3-100    | 760             | 1570                     | 2780                           | 5340                         | 8400         | 13000        | 35000        |
| Max. Axial Loa    | ıd       | N                         | 1,2   | 3-100    | 410             | 750                      | 1870                           | 3310                         | 4670         | 6460         | 21400        |
| Operating Tem     | າກ       | °C                        |       | 3-100    |                 |                          |                                | -10 °C ~+90 °                |              |              |              |
|                   | ·le.     |                           |       | _        |                 |                          |                                |                              |              | \            |              |
| Service Life      |          | hr                        | 1     | 3-100    |                 |                          | ZU,UUU (1U,U                   | 000/ Continuo                | us operation | )            |              |
| Efficiency        |          | %                         | 1     | 3-10     |                 |                          |                                | ≧ 95%                        |              |              |              |
| -                 |          |                           | 2     | 12-100   |                 |                          |                                | ≧ 92%                        |              |              |              |
| Weight            |          | kg                        | 1     | 3-10     | 1.0             | 2.6                      | 6.8                            | 13.5                         | 25.1         | 50           | 82           |
|                   |          |                           | 2     | 12-100   | 1.4             | 3.3/2.9                  | 8.9/7.2                        | 14.8                         | 26.7         | 55           | 88           |
| Mounting Positi   | ion      |                           | 1,2   | 3-100    |                 |                          |                                | Any direction                | 1            |              |              |
| Noise Level 2     | 2        | dBA/1m                    | 1,2   | 3-100    | 62              | 64                       | 66                             | 68                           | 70           | 72           | 74           |
| Protection Clas   |          | _                         | 1,2   | 3-100    |                 |                          |                                | IP65                         |              |              |              |
| Lubrication       |          |                           | 1,2   | 3-100    |                 |                          | С.                             | nthetic Lubric               | ant          |              |              |
| Lubrication       |          |                           | 1,2   | 3-100    | <br> <br> Inert | ia(J1)                   | 5)                             | muneuc Lubrio                | aiit         |              |              |
| Stage             | R        | Ratio                     | ur    | nit      | PGRH-42         | PGRH-60                  | PGRH-90                        | PGRH-115                     | PGRH-142     | PGRH-180     | PGRH-220     |
| 290               |          | 1/5/7/9                   | - GI  |          | 0.06            | 0.40                     | 2.28                           | 6.87                         | 24.2         | 69.8         | 138.2        |
| 1                 |          | 10/14/20                  |       |          | 0.05            | 0.30                     | 1.45                           | 4.76                         | 14.5         | 50.3         | 103.6        |
| C+                |          |                           |       | 2        |                 |                          |                                |                              |              |              |              |
| Stage             | K        | atio Kg • cm <sup>2</sup> |       | PGRH-42  | PGRH-60(T)      | PGRH-90(T)               | PGRH-115(T)                    | PGKH-142(1)                  | FGKH-1801    | PGRH-220T    |              |
|                   |          | /0F /0F / : =             |       |          | 0               | 0.40/2.22                | 0.00(= ==:                     | 2                            |              | 07 -         | 00.5         |
| 2                 | 15/20,   | /25/35/45<br>thers        |       |          | 0.06            | 0.40(0.08)<br>0.30(0.06) | 2.28(0.72)<br>1.45(0.38)       | 3.02<br>1.64                 | 7.83<br>5.00 | 27.7<br>15.9 | 80.3<br>55.3 |

Products due to human error, natural disasters or other factors lead to poor or damaged, will not be covered under warranty.


<sup>\* 1.</sup> Applied to the output shaft center @100rpm.
\* 2. Measured at 3000rpm with no load
% The above figures/specifications are subject to change without prior notice.



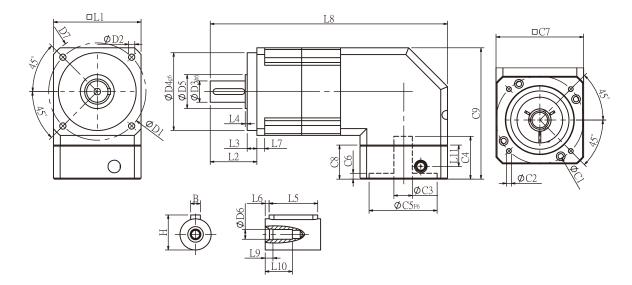




### PGR Single Stage Dimensions



### Specifications


| Dimensions         | PGR42   | PGR60   | PGR90    | PGR115    | PGR142   | PGR180 | PGR220 |
|--------------------|---------|---------|----------|-----------|----------|--------|--------|
| D1                 | 50      | 70      | 100      | 130       | 165      | -      | -      |
| D2                 | 3.4     | 5.5     | 6.5      | 8.5       | 10.5     | -      | -      |
| D3 h6              | 13      | 16      | 22       | 32        | 40       | -      | -      |
| D4 g6              | 35      | 50      | 80       | 110       | 130      | -      | -      |
| D5                 | 15      | 25      | 35       | 45        | 50       | -      | -      |
| D6                 | M4x0.7P | M5x0.8P | M8x1.25P | M12x1.75P | M16x2.0P | -      | -      |
| D7                 | 56      | 80      | 118      | 148       | 186      | -      | -      |
| L1                 | 42.6    | 60      | 90       | 115       | 142      | -      | -      |
| L2                 | 26      | 37      | 48       | 62        | 93       | -      | -      |
| L3                 | 5.5     | 7       | 10       | 8         | 8        | -      | -      |
| L4                 | 1.5     | 1.5     | 1.5      | 3         | 6        | -      | -      |
| L5                 | 15      | 25      | 32       | 40        | 60       | -      | -      |
| L6                 | 2       | 2       | 3        | 5         | 5        | -      | -      |
| L7                 | 4       | 6       | 8        | 12        | 18       | -      | -      |
| L8                 | 103.6   | 148.7   | 204      | 244.5     | 330      | -      | -      |
| L9                 | 4       | 4       | 4.5      | 6         | 6        | -      | -      |
| L10                | 14      | 16.5    | 20.5     | 30        | 38       | -      | -      |
| L11                | 13.5    | 21.5    | 22       | 32        | 44.7     | -      | -      |
| C1 <sup>2</sup>    | 46      | 70      | 90       | 115       | 145      | -      | -      |
| C2 <sup>2</sup>    | M4x0.7P | M5x0.8P | M6x1.0P  | M8x1.25P  | M8x1.25P | -      | -      |
| C3 <sup>2</sup>    | ≦8      | ≦14     | ≦19/≦24  | ≦24       | ≦35      | -      | -      |
| C4 <sup>2</sup>    | 29      | 34      | 44       | 53        | 75       | -      | -      |
| C5 <sup>2</sup> F6 | 30      | 50      | 70       | 95        | 110      | -      | -      |
| C6 <sup>2</sup>    | 6       | 5       | 5        | 6         | 9        | -      | -      |
| C7 <sup>2</sup>    | 42.6    | 60      | 90       | 115       | 140      | -      | -      |
| C8 <sup>2</sup>    | 25      | 33      | 35       | 48        | 65       | -      | -      |
| C9 <sup>2</sup>    | 70.8    | 107.8   | 135      | 174.5     | 207      | -      | -      |
| В                  | 5       | 5       | 6        | 10        | 12       | -      | -      |
| Н                  | 15      | 18      | 24.5     | 35        | 43       | -      | -      |

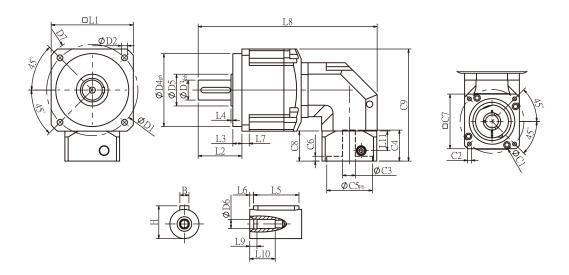
 $<sup>\</sup>bigstar \ \text{C1} \sim \text{C9 are motor specific dimensions(metric std shown ), Size may vary according to the motor flange chosen.}$ 

 $<sup>\</sup>bigstar$  Specification subject to change without notice.

Series Series

### PGR Double Stage Dimensions-1




#### Specifications

| Dimensions                    | PGR42   | PGR60   | PGR90    | PGR115      | PGR142   |
|-------------------------------|---------|---------|----------|-------------|----------|
|                               |         |         |          |             |          |
| D1                            | 50      | 70      | 100      | 130         | 165      |
| D2                            | 3.4     | 5.5     | 6.5      | 8.5         | 10.5     |
| D3 h6                         | 13      | 16      | 22       | 32          | 40       |
| D4 g6                         | 35      | 50      | 80       | 110         | 130      |
| D5                            | 15      | 25      | 35       | 45          | 50       |
| D6                            | M4x0.7P | M5x0.8P | M8x1.25P | M12x1.75P   | M16x2.0P |
| D7                            | 56      | 80      | 118      | 148         | 186      |
| L1                            | 42.6    | 60      | 90       | 115         | 142      |
| L2                            | 26      | 37      | 48       | 62          | 93       |
| L3                            | 5.5     | 7       | 10       | 8           | 8        |
| L4                            | 1.5     | 1.5     | 1.5      | 3           | 6        |
| L5                            | 15      | 25      | 32       | 40          | 60       |
| L6                            | 2       | 2       | 3        | 5           | 5        |
| L7                            | 4       | 6       | 8        | 12          | 18       |
| L8                            | 129.6   | 176.7   | 244      | 292.5       | 391      |
| L9                            | 4       | 4       | 4.5      | 6           | 6        |
| L10                           | 14      | 16.5    | 20.5     | 30          | 38       |
| L11                           | 13.5    | 21.5    | 22       | 32          | 44.7     |
| C1 <sup>2</sup>               | 46      | 70      | 90       | 115         | 145      |
| C2 <sup>2</sup>               | M4x0.7P | M5x0.8P | M6x1.0P  | M8x1.25P    | M8x1.25P |
| C3 <sup>2</sup>               | ≦8      | ≦14     | ≦19/≦24  | <u>≤</u> 24 | ≦35      |
| C4 <sup>2</sup>               | 29      | 34      | 44       | 53          | 75       |
| C5 <sup>2</sup> <sub>F6</sub> | 30      | 50      | 70       | 95          | 110      |
| C6 <sup>2</sup>               | 6       | 5       | 5        | 6           | 9        |
| C7 <sup>2</sup>               | 42.6    | 60      | 90       | 115         | 140      |
| C8 <sup>2</sup>               | 25      | 33      | 35       | 48          | 65       |
| C9 <sup>2</sup>               | 70.8    | 107.8   | 135      | 174.5       | 207      |
| В                             | 5       | 5       | 6        | 10          | 12       |
| Н                             | 15      | 18      | 24.5     | 35          | 43       |

<sup>★</sup> C1~C9 are motor specific dimensions(metric std shown ),Size may vary according to the motor flange chosen.

 $<sup>\</sup>star$  Specification subject to change without notice.

# PGR Double Stage Dimensions-2



### Specifications

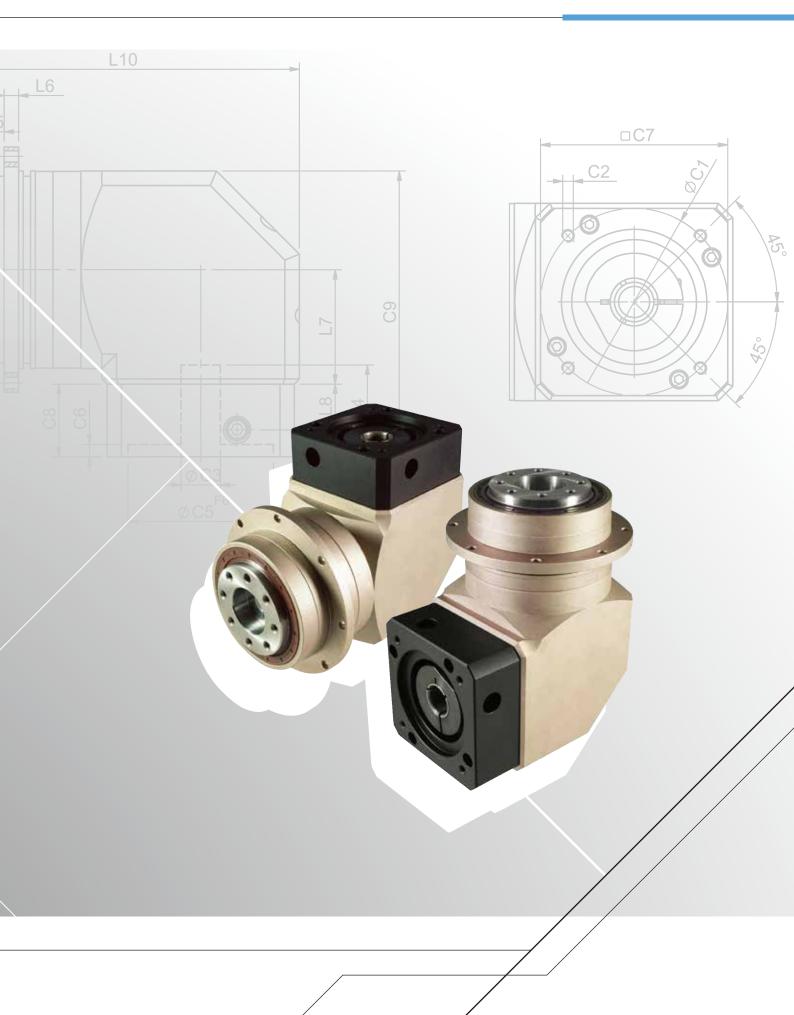
| Dimensions         | PGR60T  | PGR90T   | PGR115T   | PGR142T     | PGR180T     | PGR220T |
|--------------------|---------|----------|-----------|-------------|-------------|---------|
| D1                 | 70      | 100      | 130       | 165         | 215         | -       |
| D2                 | 5.5     | 6.5      | 8.5       | 10.5        | 13          | -       |
| D3h6               | 16      | 22       | 32        | 40          | 55          | -       |
| D4g6               | 50      | 80       | 110       | 130         | 160         | -       |
| D5                 | 25      | 35       | 45        | 50          | 70          | -       |
| D6                 | M5x0.8P | M8x1.25P | M12x1.75P | M16x2.0P    | M20x2.5P    | -       |
| D7                 | 80      | 118      | 148       | 186         | 239         | -       |
| L1                 | 60      | 90       | 115       | 142         | 182         | -       |
| L2                 | 37      | 48       | 62        | 93          | 104.5       | -       |
| L3                 | 7       | 10       | 8         | 8           | 20          | -       |
| L4                 | 1.5     | 1.5      | 3         | 6           | 2.5         | -       |
| L5                 | 25      | 32       | 40        | 60          | 70          | -       |
| L6                 | 2       | 3        | 5         | 5           | 6           | -       |
| L7                 | 6       | 8        | 12        | 18          | 16          | -       |
| L8                 | 145.1   | 196.2    | 269.4     | 343.5       | 419.5       | -       |
| L9                 | 4       | 4.5      | 6         | 6           | 8           | -       |
| L10                | 16.5    | 20.5     | 30        | 38          | 48          | -       |
| L11                | 13.5    | 21.5     | 22        | 32          | 44.7        | -       |
| C1 <sup>2</sup>    | 46      | 70       | 90        | 115         | 145         | -       |
| C2 <sup>2</sup>    | M4x0.7P | M5x0.8P  | M6x1.0P   | M8x1.25P    | M8x1.25P    | -       |
| C3 <sup>2</sup>    | ≦8      | ≦14      | ≦19/≦24   | <u>≤</u> 24 | <u>≤</u> 35 | -       |
| C4 <sup>2</sup>    | 29      | 34       | 44        | 53          | 75          | -       |
| C5 <sup>2</sup> F6 | 30      | 50       | 70        | 95          | 110         | -       |
| C6 <sup>2</sup>    | 6       | 5        | 5         | 6           | 9           | -       |
| C7 <sup>2</sup>    | 42.6    | 60       | 90        | 115         | 140         | -       |
| C8 <sup>2</sup>    | 25      | 33       | 35        | 48          | 65          | -       |
| C9 <sup>2</sup>    | 79.5    | 122.8    | 147.5     | 188         | 207         | -       |
| В                  | 5       | 6        | 10        | 12          | 16          | -       |
| Н                  | 18      | 24.5     | 35        | 43          | 59          | -       |

 $<sup>\</sup>bigstar \ \text{C1} \sim \text{C9} \ \text{are motor specific dimensions (metric std shown ), Size may vary according to the motor flange chosen.}$ 

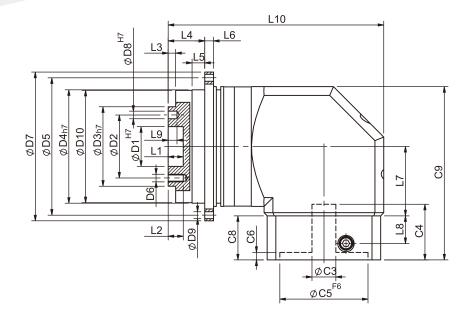
 $<sup>\</sup>bigstar$  Specification subject to change without notice.

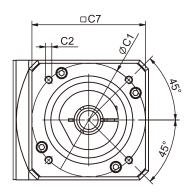
### **PLANETARY GEARHEADS**

#### **PGR Specifications Table**


| Specifications           |                  | Stage | Ratio                                                                                       | PGR-42         | PGR-60                  | PGR-90                  | PGR-115                  | PGR-142                  | PGR-180     | PGR-220          |
|--------------------------|------------------|-------|---------------------------------------------------------------------------------------------|----------------|-------------------------|-------------------------|--------------------------|--------------------------|-------------|------------------|
|                          |                  |       | 3                                                                                           | 13.8           | 44.3                    | 95.2                    | 283                      | 482                      | 1510        | 1670             |
|                          |                  |       | 4                                                                                           | 11.9           | 35.9                    | 74.6                    | 249                      | 490                      | 1055        | 1574             |
|                          |                  |       | 5                                                                                           | 13.8           | 43.0                    | 95.2                    | 283                      | 473                      | 1151        | 1670             |
|                          |                  |       | 6                                                                                           | 12.5           | 39.4                    | 90.9                    | 266                      | 436                      | 1055        | 1574             |
|                          |                  | 1     | 7                                                                                           | 11.9           | 36.0                    | 85.6                    | 219                      | 400                      | 1055        | 1574             |
|                          |                  | _     | 8                                                                                           | 10.9           | 32.4                    | 85.0                    | 216                      | 363                      | 860         | 1184             |
|                          |                  |       | 9                                                                                           | 9.8            | 28.7                    | 80.0                    | 210                      | 320                      | 764         | 1185             |
|                          |                  |       | 10                                                                                          | 10.1           | 25.0                    | 75.0                    | 210                      | 320                      | 763         | 1184             |
|                          |                  | Stage | Ratio                                                                                       | PGR-42         | PGR-60 (T)              | PGR-90(T)               | PGR-115(T)               | PGR-142(T)               | PGR-180T    | PGR-220T         |
|                          |                  |       | 15                                                                                          | 13.8           | 44.2                    | 95.2                    | 283                      | 482                      | 1151        | 1670             |
| Nominal Output Torque    | N•m              |       | 20                                                                                          | 11.9           | 35.9                    | 74.6                    | 249                      | 490                      | 1055        | 1574             |
|                          |                  |       | 25                                                                                          | 13.8           | 43.0                    | 95.2                    | 283                      | 473                      | 1151        | 1670             |
|                          |                  |       | 30                                                                                          | 13.8           | 43.0                    | 95.2                    | 283                      | 473                      | 1151        | 1670             |
|                          |                  | 2     | 35                                                                                          | 13.8           | 43.0                    | 95.2                    | 283                      | 473                      | 1151        | 1670             |
|                          |                  | -     | 40                                                                                          | 13.8           | 43.0                    | 95.2                    | 283                      | 473                      | 1151        | 1670             |
|                          |                  |       | 45                                                                                          | 13.8           | 43.0                    | 95.2                    | 283                      | 473                      | 1151        | 1670             |
|                          |                  |       | 50                                                                                          | 13.8           | 43.0                    | 95.2                    | 283                      | 473                      | 1151        | 1670             |
|                          |                  |       | 60                                                                                          | 12.5           | 39.4                    | 90.9                    | 266                      | 436                      | 1055        | 1574             |
|                          |                  |       | 70                                                                                          | 11.9           | 36.0                    | 85.6                    | 219                      | 400                      | 1055        | 1574             |
|                          |                  |       | 80                                                                                          | 10.9           | 32.4                    | 85.0                    | 219                      | 363                      | 860         | 1184             |
|                          |                  |       | 90                                                                                          | 9.8            |                         | 80.0                    | 210                      | 320                      |             | 1185             |
|                          |                  |       |                                                                                             |                | 28.7                    |                         |                          |                          | 764         |                  |
|                          |                  |       | 100                                                                                         | 10.1           | 25.0                    | 75.0                    | 210                      | 320                      | 763         | 1184             |
| Emergency Stop Torque    | N • m            |       | 3.0 times of Nominal Output Torque (* Max. Output Torque T2B =60% of Emergency Stop Torque) |                |                         |                         |                          |                          |             |                  |
| Nominal Input Speed      | rpm              | 1,2   | 3-100                                                                                       | 3000           | 3000                    | 3000                    | 2500                     | 2000                     | 2000        | 2000             |
| Max. Input Speed         | rpm              | 1,2   | 3-100                                                                                       | 6000           | 6000                    | 6000                    | 5000                     | 4000                     | 4000        | 4000             |
|                          |                  | 1     | 3-10                                                                                        | -              | -                       | _                       | <b>≦</b> 4               | ≦4                       | ≦4          | ≦4               |
| Micro Backlash P0        | arcmin           | 2     | 12-100                                                                                      | _              | _                       | _                       | = ·<br>≦ 6               | _ ·<br>≦ 6               | _ ·<br>≦ 6  | = ·<br>≦ 6       |
|                          |                  | 1     | 3-10                                                                                        | -              | -                       | ≦ 6                     | <u>-6</u>                | <u>6</u>                 | <u>6</u>    | <u>6</u>         |
| Precision Backlash P1    | arcmin           | 2     | 12-100                                                                                      | _              | _                       | = 0<br>≦ 9              | = 8<br>≦ 8               | = 8<br>≦ 8               | _ 0<br>≦ 8  | = 8<br>≦ 8       |
|                          |                  | 1     | 3-10                                                                                        | ≦12            | <u>≦</u> 9              | <br>≦9                  | <br>≦9                   | <br>≦9                   | <u> </u>    | <br>≦9           |
| Standard Backlash P2     | arcmin           | 2     | 12-100                                                                                      | = 12<br>≦ 15   | = 3<br>≦ 12             | = 3<br>≦ 12             | = 3<br>≦ 11              | = 3<br>≦ 11              | = 3<br>≦ 11 | = 3<br>≦ 11      |
| Torsional Rigidity       | N • m<br>/arcmin | 1,2   | 3-100                                                                                       | 1.0            | 2.8                     | 7.5                     | 15.5                     | 30                       | 57          | 110              |
| Max. Radial Load         | N                | 1,2   | 3-100                                                                                       | 350            | 960                     | 1630                    | 3380                     | 6150                     | 7260        | 11120            |
|                          |                  |       |                                                                                             |                |                         |                         |                          |                          |             |                  |
| Max. Axial Load          | N                | 1,2   | 3-100                                                                                       | 320            | 900                     | 1420                    | 2930                     | 5510                     | 5550        | 8560             |
| Operating Temp.          | °C               |       | 3-100                                                                                       |                |                         |                         | -10 °C ~+90 °            |                          |             |                  |
| Service Life             | hr               |       | 3-100                                                                                       |                |                         | 20,000 (10,0            | 000/ Continuo            | us operation)            | 1           |                  |
| Efficiency               | %                | 1 2   | 3-10<br>12-100                                                                              |                |                         |                         | ≧ 94%<br>≧ 90%           |                          |             |                  |
| 14/ 1 1 -                |                  | 1     | 3-10                                                                                        | 1.0            | 2.5                     | 6.5                     | 13.2                     | 24.6                     | 49          | 81               |
| Weight                   | kg               | 2     | 12-100                                                                                      | 1.3            | 3.2/2.8                 | 8.6/6.9                 | 17.7/14.5                | 29.7/26.2                | 53          | 87               |
| Mounting Position        | -                | 1,2   | 3-100                                                                                       |                | ,                       |                         | Any direction            |                          |             |                  |
| Noise Level <sup>2</sup> | dBA/1m           | 1,2   | 3-100                                                                                       | 65             | 67                      | 70                      | 70                       | 75                       | 75          | 80               |
|                          |                  |       |                                                                                             | 33             |                         | , 0                     |                          | , ,                      | , ,         |                  |
| Protection Class         | -                | 1,2   | 3-100                                                                                       |                |                         |                         | IP65                     |                          |             |                  |
| Lubrication              | -                | 1,2   | 3-100                                                                                       |                |                         | Sy                      | nthetic Lubric           | ant                      |             |                  |
|                          |                  |       |                                                                                             | Inert          | ia(J1)                  |                         |                          |                          |             |                  |
| Stage                    | Ratio            | ur    | nit                                                                                         | PGR-42         | PGR-60                  | PGR-90                  | PGR-115                  | PGR-142                  | PGR-180     | PGR-220          |
| 3                        | /4/5/7/9         |       |                                                                                             | 0.06           | 0.40                    | 2.28                    | 6.87                     | 24.2                     | 69.8        | 138.2            |
|                          |                  | 1     |                                                                                             | 0.05           | 0.30                    | 1.45                    | 4.76                     | 14.5                     | 50.3        | 103.6            |
|                          | 6/8/10           | -     |                                                                                             |                |                         |                         |                          |                          |             |                  |
| 1                        | Ratio            | Ka •  | cm <sup>2</sup>                                                                             | PGR-42         | PGR-60(T)               | PGR-90(T)               | PGR-115(T)               | PGR-142(T)               | PGR-180T    | PGR-220T         |
| 1<br>Stage               |                  | Kg •  | cm <sup>2</sup>                                                                             | PGR-42<br>0.06 | PGR-60(T)<br>0.40(0.08) | PGR-90(T)<br>2.28(0.72) | PGR-115(T)<br>6.87(3.02) | PGR-142(T)<br>24.2(7.83) | PGR-180T    | PGR-220T<br>80.3 |

Products due to human error, natural disasters or other factors lead to poor or damaged, will not be covered under warranty.


<sup>\* 1.</sup> Applied to the output shaft center @100rpm.
 \* 2. Measured at 3000rpm with no load. \* 3. PGR115T - □□ - P0 is not applicable.
 ※ The above figures/specifications are subject to change without prior notice.

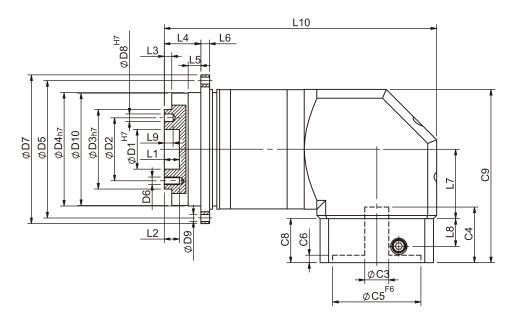


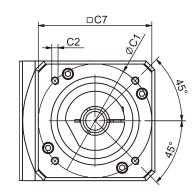





# PGFR Single Stage Dimensions







### Specifications

| Dimensions         | PGFR42 | PGFR60 | PGFR90  | PGFR115 |
|--------------------|--------|--------|---------|---------|
| D1 H7              | -      | -      | 31.5    | -       |
| D2                 | -      | -      | 50      | -       |
| D3 h7              | -      | -      | 63      | -       |
| D4 h7              | -      | -      | 90      | -       |
| D5                 | -      | -      | 109     | -       |
| D6                 | -      | -      | M6x1.0P | -       |
| D7                 | -      | -      | 118     | -       |
| D8 H7              | -      | -      | 6       | -       |
| D9                 | -      | -      | 5.5     | -       |
| D10                | -      | -      | 89.2    | -       |
| L1                 | -      | -      | 12      | -       |
| L2                 | -      | -      | 12      | -       |
| L3                 | -      | -      | 6       | -       |
| L4                 | -      | -      | 29      | -       |
| L5                 | -      | -      | 10      | -       |
| L6                 | -      | -      | 7       | -       |
| L7                 | -      | -      | 55      | -       |
| L8                 | -      | -      | 22      | -       |
| L9                 | -      | _      | 7       | _       |
| L10                | -      | -      | 171.1   | -       |
| C1 <sup>2</sup>    | -      | -      | 90      | -       |
| C2 <sup>2</sup>    | -      | -      | M6x1.0P | -       |
| C3 <sup>2</sup>    | -      | -      | ≦19/≦24 | -       |
| C4 <sup>2</sup>    | -      | -      | 44      | -       |
| C5 <sup>2</sup> F6 | -      | -      | 70      | -       |
| C6 <sup>2</sup>    | -      | -      | 5       | -       |
| C7 <sup>2</sup>    | -      | -      | 90      | -       |
| C8 <sup>2</sup>    | -      | -      | 35      | -       |
| C9 <sup>2</sup>    | -      | -      | 137.5   | -       |

 $<sup>\</sup>star$  C1~C9 are motor specific dimensions(metric std shown ), Size may vary according to the motor flange chosen.

 $<sup>\</sup>bigstar$  Specification subject to change without notice.





# Specifications

Unit:mm

|                    | I      | I      | I       | I       |
|--------------------|--------|--------|---------|---------|
| Dimensions         | PGFR42 | PGFR60 | PGFR90  | PGFR115 |
| D1 H7              | -      | -      | 31.5    | -       |
| D2                 | -      | -      | 50      | -       |
| D3 h7              | -      | -      | 63      | -       |
| D4 h7              | -      | -      | 90      | -       |
| D5                 | -      | -      | 109     | -       |
| D6                 | -      | -      | M6x1.0P | -       |
| D7                 | -      | -      | 118     | -       |
| D8 H7              | -      | -      | 6       | -       |
| D9                 | -      | -      | 5.5     | -       |
| D10                | -      | -      | 89.2    | -       |
| L1                 | -      | -      | 12      | -       |
| L2                 | -      | -      | 12      | -       |
| L3                 | -      | -      | 6       | -       |
| L4                 | -      | -      | 29      | -       |
| L5                 | -      | -      | 10      | -       |
| L6                 | -      | -      | 7       | -       |
| L7                 | -      | -      | 55      | -       |
| L8                 | -      | -      | 22      | -       |
| L9                 | -      | -      | 7       | -       |
| L10                | -      | -      | 216.1   | -       |
| C1 <sup>2</sup>    | -      | -      | 90      | -       |
| C2 <sup>2</sup>    | -      | -      | M6x1.0P | -       |
| C3 <sup>2</sup>    | -      | -      | ≦19/≦24 | -       |
| C4 <sup>2</sup>    | -      | -      | 44      | -       |
| C5 <sup>2</sup> F6 | -      | -      | 70      | -       |
| C6 <sup>2</sup>    | -      | -      | 5       | -       |
| C7 <sup>2</sup>    | -      | -      | 90      | -       |
| C8 <sup>2</sup>    | -      | -      | 35      | -       |
| C9 <sup>2</sup>    | -      | -      | 137.5   | -       |
|                    |        |        |         |         |

<sup>★</sup> C1~C9 are motor specific dimensions(metric std shown ),Size may vary according to the motor flange chosen.

Serie Serie

Series Series

PGE Series

) T

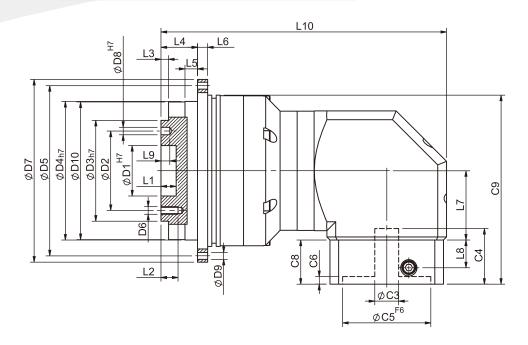
Serie

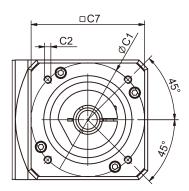
PGF

PE

PEC

Series


Serie Serie


Serie

Series Series

 $<sup>\</sup>star$  Specification subject to change without notice.

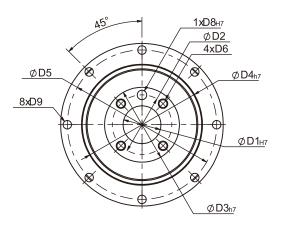
# PGFR Double Stage Dimensions-2



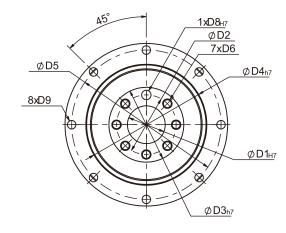


#### Specifications

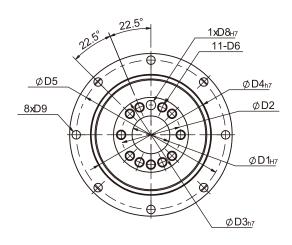
| Dimensions         | PGFR60T      | PGFR90T      | PGFR115T                 |
|--------------------|--------------|--------------|--------------------------|
| D1 H7              | -            | - PGFR901    | 40                       |
| D2                 |              |              | 63                       |
| D3 h7              | <del>-</del> | <del>-</del> |                          |
|                    | -            | -            | 80                       |
| D4 h7              | -            | -            | 110                      |
| D5                 | -            | -            | 135                      |
| D6                 | -            | -            | M6x1.0P                  |
| D7                 | -            | -            | 145                      |
| D8 H7              | -            | -            | 6                        |
| D9                 | -            | -            | 5.5                      |
| D10                | -            | -            | 109.2                    |
| L1                 | _            | _            | 12                       |
| L2                 | -            | -            | 13.5                     |
| L3                 | _            | -            | 6                        |
| L4                 | -            | -            | 29                       |
| L5                 | -            | _            | 10                       |
| L6                 | _            | -            | 8                        |
| L7                 | _            | -            | 55                       |
| L8                 | -            | -            | 22                       |
| L9                 | -            | -            | 7                        |
| L10                | -            | -            | 226.6                    |
| C1 <sup>2</sup>    | -            | -            | 90                       |
| C2 <sup>2</sup>    | _            | -            | M6x1.0P                  |
| C3 <sup>2</sup>    | -            | -            | <u>≤</u> 19/ <u>≤</u> 24 |
| C4 <sup>2</sup>    | _            | _            | 44                       |
| C5 <sup>2</sup> F6 | -            | -            | 70                       |
| C6 <sup>2</sup>    | _            | -            | 5                        |
| C7 <sup>2</sup>    | -            | -            | 90                       |
| C8 <sup>2</sup>    | -            | -            | 35                       |
| C9 <sup>2</sup>    | -            | -            | 150                      |


 $<sup>\</sup>star$  C1~C9 are motor specific dimensions(metric std shown ), Size may vary according to the motor flange chosen.

 $<sup>\</sup>bigstar$  Specification subject to change without notice.


# Series

#### PGFR Flange Dimensions


#### PGFR42



#### PGFR60 PGFR90



#### PGFR115



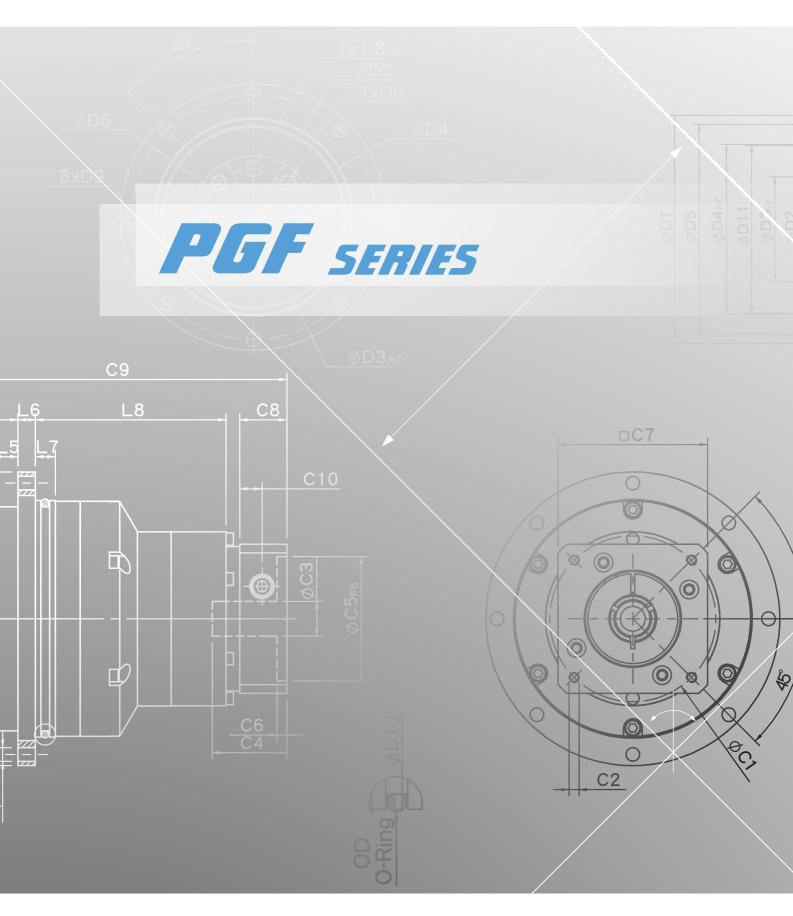
### Specifications

| Dimensions | PGFR42  | PGFR60  | PGFR90  | PGFR115 | PGFR142 |
|------------|---------|---------|---------|---------|---------|
| D1 H7      | 12      | 20      | 31.5    | 40      | -       |
| D2         | 20      | 31.5    | 50      | 63      | -       |
| D3 h7      | 28      | 40      | 63      | 80      | -       |
| D4 h7      | 47      | 64      | 90      | 110     | -       |
| D5         | 67      | 79      | 109     | 135     | -       |
| D6         | M3x0.5P | M5x0.8P | M6x1.0P | M6x1.0P | -       |
| D8 H7      | 3       | 5       | 6       | 6       | -       |
| D9         | 3.4     | 4.5     | 5.5     | 5.5     | -       |

<sup>★</sup> Specification subject to change without notice.

### PGFR Specifications Table

| Specifica                    | tions                 | Stage | Ratio           | PGFR-42                       | PGFR-60                             | PGFR-90                         | PGFR-115          |
|------------------------------|-----------------------|-------|-----------------|-------------------------------|-------------------------------------|---------------------------------|-------------------|
|                              |                       |       | 3               | -                             | 40                                  | 105                             | 180               |
|                              |                       |       | 4               | 16                            | 43                                  | 110                             | 240               |
|                              |                       |       | 5               | 17                            | 50                                  | 130                             | 290               |
|                              |                       | 1     | 7               | 14                            | 44                                  | 125                             | 270               |
|                              |                       | -     | 10              | 11                            | 37                                  | 95                              | 220               |
|                              |                       |       | 14              | 14                            | 44                                  | 125                             | 270               |
|                              |                       |       | 20              | 11                            | 37                                  | 95                              | 220               |
|                              |                       | Stage | Ratio           | PGFR-42                       | PGFR-60(T)                          | PGFR-90(T)                      | PGFR-115T         |
| Nominal Output Tor           | gue N•m               |       | 15              | -                             | 40                                  | 105                             | 180               |
| Normal Output Ton            | que   N • III         |       | 20              | 16                            | 43                                  | 110                             | 240               |
|                              |                       |       | 25              | 17                            | 50                                  | 130                             | 290               |
|                              |                       |       | 30              | 17                            | 50                                  | 130                             | 290               |
|                              |                       |       | 35              | 17                            | 50                                  | 130                             | 290               |
|                              |                       | 2     | 40              | 17                            | 50                                  | 130                             | 290               |
|                              |                       |       | 50              | 17                            | 50                                  | 130                             | 290               |
|                              |                       |       | 70              | 14                            | 44                                  | 125                             | 270               |
|                              |                       |       | 100             | 11                            | 37                                  | 95                              | 220               |
|                              |                       |       | 140             | 14                            | 44                                  | 125                             | 270               |
|                              |                       |       | 200             | 11                            | 37                                  | 95                              | 220               |
| Emergency Stop Tor           | que N•m               |       | (* N            | 3.0 time<br>1ax. Output Torqi | es of Nominal Outpue T2B =60% of Er | out Torque<br>nergency Stop Tol | rque)             |
| Nominal Input Spe            | ed rpm                | 1,2   | 3-100           | 5000                          | 5000                                | 4000                            | 4000              |
| Max. Input Speed             | rpm                   | 1,2   | 3-100           | 10000                         | 10000                               | 8000                            | 8000              |
| Micro Backlash PO            | ) arcmin              | 1 2   | 3-10<br>12-100  | -<br>-                        | -<br>-                              | ≦ 4<br>≦ 6                      | ≦ 2<br>≦ 4        |
|                              | 21                    | 1     | 3-10            | ≦ 6                           | ≦ 6                                 | <u> </u>                        | <u> </u>          |
| Precision Backlash I         | P1 arcmin             | 2     | 12-100          | ≦8                            | ≦8                                  | ≦ 8                             | ≦ 7               |
| Standard Backlash            | P2 arcmin             | 1     | 3-10            | ≦ 8                           | ≦ 8                                 | ≦8                              | ≦ 6               |
| Torsional Rigidity           | Nam                   | 1,2   | 12-100<br>3-100 | ≦ 10<br>6                     | ≦10<br>12                           | ≦10<br>28                       | ≦ 9<br>75         |
| Max. Bending Mome            |                       | 1,2   | 3-100           | 18                            | 29                                  | 61                              | 111               |
| Max. Axial Load              | N                     | 1,2   | 3-100           | 372                           | 508                                 | 849                             | 1260              |
|                              | °C                    | · ·   | 3-100           |                               |                                     | ~+90 °C                         |                   |
| Operating Temp. Service Life | hr                    |       | 3-100           |                               | 20,000 (10,000/ Co                  |                                 | n)                |
|                              |                       | 1     | 3-100           |                               |                                     | 95%                             | 11)               |
| Efficiency                   | %                     | 2     | 12-100          |                               |                                     | 92%                             |                   |
| \\/-:- -±                    | 1                     | 1     | 3-10            | 1.0                           | 2.3                                 | 6.3                             | 13.5              |
| Weight                       | kg                    | 2     | 12-100          | 1.4                           | 3.0/2.6                             | 8.3/6.7                         | 14.8              |
| Mounting Position            | n -                   | 1,2   | 3-100           |                               |                                     | irection                        |                   |
| Noise Level <sup>2</sup>     | dBA/1m                | 1,2   | 3-100           | 62                            | 64                                  | 66                              | 68                |
| Protection Class             | -                     | 1,2   | 3-100           |                               |                                     | 265                             |                   |
| Lubrication                  | -                     | 1,2   | 3-100           | (11)                          | Synthetic                           | Lubricant                       |                   |
| C                            | 5                     |       | Inertia(        |                               | DOED CO                             | DOED 00                         | DCE2 445          |
| Stage                        | Ratio                 |       | unit            | PGFR-42                       | PGFR-60                             | PGFR-90                         | PGFR-115          |
| 1                            | 3/4/5/7/9<br>10/14/20 |       |                 | 0.06                          | 0.40                                | 2.28                            | 6.87<br>4.76      |
| Stage                        | Ratio                 |       | Va - cm²        | PGFR-42                       | PGFR-60(T)                          | PGFR-90(T)                      |                   |
| Stage                        | 15/20/25/35           |       | Kg • cm²        | 0.06                          | 0.40(0.08)                          | 2.28(0.72)                      | PGFR-115T<br>3.02 |
| 2                            | 13/20/23/33<br>others |       |                 | 0.06                          | 0.30(0.06)                          | 1.45(0.38)                      | 1.64              |
|                              | Others                |       |                 | 5.05                          | 0.55(0.00)                          | 1. 15(0.50)                     | 2.01              |

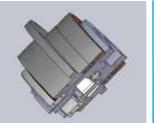

Products due to human error, natural disasters or other factors lead to poor or damaged, will not be covered under warranty.

<sup>\* 1.</sup> Applied to the output shaft center @100rpm.
\* 2. Measured at 3000rpm with no load
% The above figures/specifications are subject to change without prior notice.

# **PLANETARY GEARHEADS**



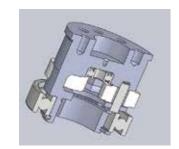







PGF SERIES FEATURES

Alloy steel gear with unique heat treatment. Additionally, with gear grinding processing to get the best accuracy, high wear resistance and high impact toughness.





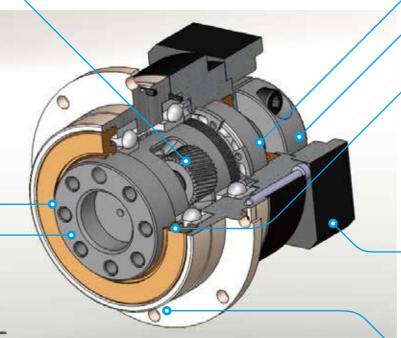

The sun gear bearing is placed directly into the planetary arm bracket, the overall mechanical structure designed to ensure concentricity of the transmission components.



Input-end and motor shaft are coupled through a dynamic balanced collar clamping mechanism to ensure connection interface concentricity and zero slip power transmission at high speed.



structure rigid and output torque.

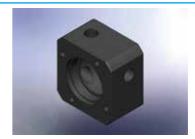

Planetary arm bracket and output shaft are one-piece constructed, setting bearing apart for larger span to reach the largest reverse rigid and contribute high axis radial load capacity.

Planet gear transmission interface equipped with needle bearings, full needle roller bearing aligned without retainer achieve maximum

exposure but smallest gap tolerances. Enhance over-all gear



Grinding process to smooth surface of output shaft, and with oil seal to minimum friction coefficient and reducing start up load; result in the best seal-ability and extended lifespan. Hollow output shaft connect perfectly with circular flange drastically reducing the installation space.



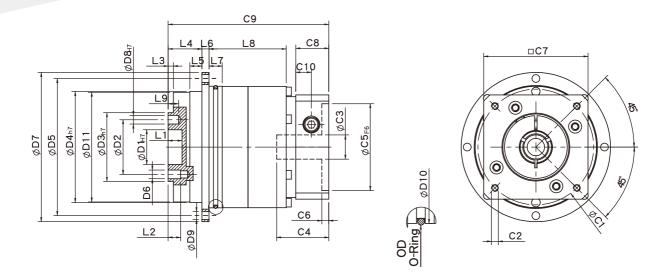

PGF series overall design suitable for combination operation with servo motor high speed input and achieves maximum torque output. Hollow output shaft connect perfectly with circular flange drastically reducing the installation space.

Precision gear design and gear processing create a planetary gearhead with low backlash operation, high efficiency, low noise and long lifespan.



against oil leak. Protection grade IP65 safeguards fully avoid leaking problem, and given it maintenance free.




Advanced motor bracket design coupled with the input shaft bushing is easy to mount to any servo or stepper motor.

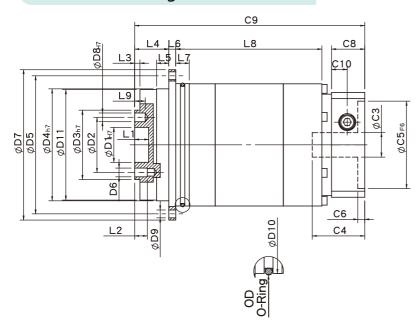


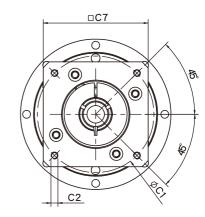
Advanced electroless nickel plating surface treatment resists scratch and corrosion. Suitable for stringent require of high-tech equipment.

The gearbox and internal gear ring are one-piece constructed, and then processed with advanced Germany gear shaper machinery for high precision, high torque and abrade consumption.

## PGF Single Stage Dimensions




### Specifications


| Dimensions         | PGF42   | PGF60       | PGF90                    | PGF115                   |
|--------------------|---------|-------------|--------------------------|--------------------------|
| D1 H7              | 12      | 20          | 31.5                     | 40                       |
| D2                 | 20      | 31.5        | 50                       | 63                       |
| D3 h7              | 28      | 40          | 63                       | 80                       |
| D4 h7              | 47      | 64          | 90                       | 110                      |
| D4 n7              | 67      | 79          | 109                      | 135                      |
| D6                 | M3x0.5P |             |                          | M6x1.0P                  |
|                    |         | M5x0.8P     | M6x1.0P                  |                          |
| D7                 | 72      | 86          | 118                      | 145                      |
| D8 H7              | 3       | 5           | 6                        | 6                        |
| D9                 | 3.4     | 4.5         | 5.5                      | 5.5                      |
| D10                | 60      | 70          | 95                       | 120                      |
| D11                | 46.2    | 63.2        | 89.2                     | 109.2                    |
| L1                 | 4       | 8           | 12                       | 12                       |
| L2                 | 6       | 7.2         | 12                       | 13.5                     |
| L3                 | 3       | 3           | 6                        | 6                        |
| L4                 | 19.5    | 19.5        | 29                       | 29                       |
| L5                 | 7       | 7           | 10                       | 10                       |
| L6                 | 4       | 4           | 7                        | 8                        |
| L7                 | 5       | 7.7         | 8                        | 10                       |
| L8                 | 25      | 29.5        | 35                       | 50.5                     |
| L9                 | 4       | 6           | 7                        | 7                        |
| C1 <sup>2</sup>    | 46      | 70          | 90                       | 115                      |
| C2 <sup>2</sup>    | M4x0.7P | M5x0.8P     | M6x1.0P                  | M8x1.25P                 |
| C3 <sup>2</sup>    | ≦8/≦11  | <u>≤</u> 14 | <u>≤</u> 19/ <u>≤</u> 24 | <u>≤</u> 24/ <u>≤</u> 32 |
| C4 <sup>2</sup>    | 28.1    | 36.5        | 41.2                     | 51.1                     |
| C5 <sup>2</sup> F6 | 30      | 50          | 70                       | 95                       |
| C6 <sup>2</sup>    | 4       | 4           | 6.7                      | 6                        |
| C7 <sup>2</sup>    | 42      | 60          | 90                       | 115                      |
| C8 <sup>2</sup>    | 16.5    | 19          | 25.5                     | 30                       |
| C9 <sup>2</sup>    | 74.8    | 84.5        | 104.5                    | 127.5                    |
| C10 <sup>2</sup>   | 7.4     | 9           | 11.3                     | 13.9                     |
| OD                 | 56x2    | 66x2        | 90x3                     | 110x3                    |

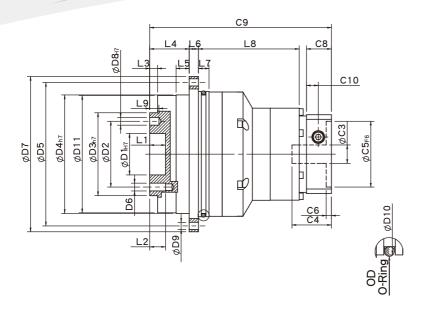
 $<sup>\</sup>star$  C1~C9 are motor specific dimensions(metric std shown ), Size may vary according to the motor flange chosen.

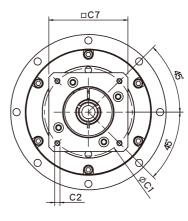
 $<sup>\</sup>bigstar$  Specification subject to change without notice.

## PGF Double Stage Dimensions-1






### Specifications


| Dimensions         | PGF42      | PGF60       | PGF90       |
|--------------------|------------|-------------|-------------|
| D1H7               | 12         | 20          | 31.5        |
| D2                 | 20         | 31.5        | 50          |
| D3h7               | 28         | 40          | 63          |
| D4h7               | 47         | 64          | 90          |
| D5                 | 67         | 79          | 109         |
| D6                 | M3x0.5P    | M5x0.8P     | M6x1.0P     |
| D7                 | 72         | 86          | 118         |
| D8H7               | 3          | 5           | 6           |
| D9                 | 3.4        | 4.5         | 5.5         |
| D10                | 60         | 70          | 95          |
| D11                | 46.2       | 63.2        | 89.2        |
| L1                 | 4          | 8           | 12          |
| L2                 | 6          | 7.2         | 12          |
| L3                 | 3          | 3           | 6           |
| L4                 | 19.5       | 19.5        | 29          |
| L5                 | 7          | 7           | 10          |
| L6                 | 4          | 4           | 7           |
| L7                 | 5          | 7.7         | 8           |
| L8                 | 54.5       | 68.5        | 80          |
| L9                 | 4          | 6           | 7           |
| C1 <sup>2</sup>    | 46         | 70          | 90          |
| C2 <sup>2</sup>    | M4x0.7P    | M5x0.8P     | M6x1.0P     |
| C3 <sup>2</sup>    | <u>≦</u> 8 | <u>≤</u> 14 | <u>≤</u> 19 |
| C4 <sup>2</sup>    | 28.1       | 36.5        | 41.2        |
| C5 <sup>2</sup> F6 | 30         | 50          | 70          |
| C6 <sup>2</sup>    | 4          | 4           | 6.7         |
| C7 <sup>2</sup>    | 42         | 60          | 90          |
| C8 <sup>2</sup>    | 16.5       | 19          | 25.5        |
| C9 <sup>2</sup>    | 102.5      | 123.5       | 148.6       |
| C10 <sup>2</sup>   | 7.4        | 9           | 11.3        |
| OD                 | 56x2       | 66x2        | 90x3        |

| ★ C1~C9 are motor | r specific almensions(m | etric sta snown ),Siz | ze may vary according | g to the motor flange chosen |  |
|-------------------|-------------------------|-----------------------|-----------------------|------------------------------|--|
|                   |                         |                       |                       |                              |  |

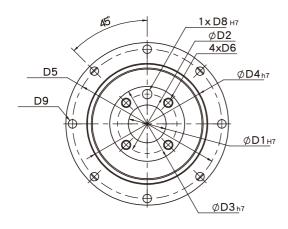
 $<sup>\</sup>star$  Specification subject to change without notice.

## PGF Double Stage Dimensions-2

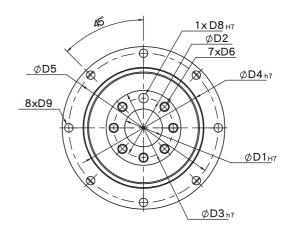




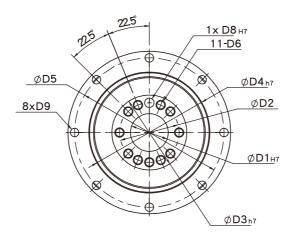
## Specifications


| Dimensions         | PGF60T                  | PGF90T      | PGF115T                  |
|--------------------|-------------------------|-------------|--------------------------|
| D1 H7              | 20                      | 31.5        | 40                       |
| D2                 | 31.5                    | 50          | 63                       |
|                    | 40                      | 63          | 80                       |
| D3 h7              |                         |             |                          |
| D4 h7              | 64                      | 90          | 110                      |
| D5                 | 79                      | 109         | 135                      |
| D6                 | M5x0.8P                 | M6x1.0P     | M6x1.0P                  |
| D7                 | 86                      | 118         | 145                      |
| D8 H7              | 5                       | 6           | 6                        |
| D9                 | 4.5                     | 5.5         | 5.5                      |
| D10                | 70                      | 95          | 120                      |
| D11                | 63.2                    | 89.2        | 109.2                    |
| L1                 | 8                       | 12          | 12                       |
| L2                 | 7.2                     | 12          | 13.5                     |
| L3                 | 3                       | 6           | 6                        |
| L4                 | 19.5                    | 29          | 29                       |
| L5                 | 7                       | 10          | 10                       |
| L6                 | 4                       | 7           | 8                        |
| L7                 | 7.7                     | 8           | 10                       |
| L8                 | 61.2                    | 68          | 89.5                     |
| L9                 | 6                       | 7           | 7                        |
| C1 <sup>2</sup>    | 46                      | 70          | 90                       |
| C2 <sup>2</sup>    | M4x0.7P                 | M5x0.8P     | M6x1.0P                  |
| C3 <sup>2</sup>    | <u>≤</u> 8/ <u>≤</u> 11 | <u>≤</u> 14 | <u>≤</u> 19/ <u>≤</u> 24 |
| C4 <sup>2</sup>    | 28.1                    | 36.5        | 41.7                     |
| C5 <sup>2</sup> F6 | 30                      | 50          | 70                       |
| C6 <sup>2</sup>    | 4                       | 4           | 6.7                      |
| C7 <sup>2</sup>    | 42                      | 60          | 90                       |
| C8 <sup>2</sup>    | 16.5                    | 19          | 25.5                     |
| C9 <sup>2</sup>    | 109.2                   | 135.5       | 159.1                    |
| C10 <sup>2</sup>   | 7.4                     | 9           | 11.3                     |
| OD                 | 66x2                    | 90x3        | 110x3                    |

<sup>★</sup> C1~C9 are motor specific dimensions(metric std shown ),Size may vary according to the motor flange chosen.


 $<sup>\</sup>star$  Specification subject to change without notice.

### PGF Flange Dimensions


### PGF42



### PGF60 PGF90



### **PGF115**



### Specifications

| Dimensions | PGF42   | PGF60   | PGF90   | PGF115  | PGF142       |
|------------|---------|---------|---------|---------|--------------|
| D1 H7      | 12      | 20      | 31.5    | 40      | -            |
| D2         | 20      | 31.5    | 50      | 63      | -            |
| D3 h7      | 28      | 40      | 63      | 80      | -            |
| D4 h7      | 47      | 64      | 90      | 110     | <del>-</del> |
| D5         | 67      | 79      | 109     | 135     | <del>-</del> |
| D6         | M3x0.5P | M5x0.8P | M6x1.0P | M6x1.0P | -            |
| D8 H7      | 3       | 5       | 6       | 6       | -            |
| D9         | 3.4     | 4.5     | 5.5     | 5.5     | -            |

<sup>★</sup> Specification subject to change without notice.

## PGF Specifications Table

| 1715 2 16                |                         |       |                      |                                |                                        |                                |          |
|--------------------------|-------------------------|-------|----------------------|--------------------------------|----------------------------------------|--------------------------------|----------|
| 規格 Specifi               | cations                 | Stage | Ratio                | PGF-42                         | PGF-60                                 | PGF-90                         | PGF-115  |
|                          |                         |       | 3                    | -                              | 40                                     | 105                            | 180      |
|                          |                         |       | 4                    | 16                             | 43                                     | 110                            | 240      |
|                          |                         | 1     | 5                    | 17                             | 50                                     | 130                            | 290      |
|                          |                         | 1     | 7                    | 14                             | 44                                     | 125                            | 270      |
|                          |                         |       | 10                   | 11                             | 37                                     | 95                             | 220      |
|                          |                         | 64    | 5.0                  | DCE 42                         | DCE CO(T)                              | DCE OO(T)                      | DCE 115T |
|                          |                         | Stage | Ratio                | PGF-42                         | PGF-60(T)                              | PGF-90(T)                      | PGF-115T |
| Nominal Output Tord      | nue N•m                 |       | 15                   | -                              | 40                                     | 105                            | 180      |
| Nominal Output Fore      | 140                     |       | 20                   | 16                             | 43                                     | 110                            | 240      |
|                          |                         |       | 25                   | 17                             | 50                                     | 130                            | 290      |
|                          |                         |       | 30                   | 17                             | 50                                     | 130                            | 290      |
|                          |                         | 2     | 35                   | 17                             | 50                                     | 130                            | 290      |
|                          |                         |       | 40                   | 17                             | 50                                     | 130                            | 290      |
|                          |                         |       | 50                   | 17                             | 50                                     | 130                            | 290      |
|                          |                         |       | 70                   |                                |                                        |                                |          |
|                          |                         |       |                      | 14                             | 44                                     | 125                            | 270      |
|                          |                         |       | 100                  | 11                             | 37                                     | 95                             | 220      |
| Emergency Stop Tord      | que N•m                 |       | (* N                 | 3.0 times<br>lax. Output Torqu | s of Nominal Outp<br>ue T2B =60% of Er | out Torque<br>mergency Stop To | rque)    |
| Nominal Input Spee       | ed rpm                  | 1,2   | 3-100                | 5000                           | 5000                                   | 4000                           | 4000     |
| Max. Input Speed         | rpm                     | 1,2   | 3-100                | 10000                          | 10000                                  | 8000                           | 8000     |
| Miero De alde de DC      |                         | 1     | 3-10                 | ≦3                             | ≦ 3                                    | ≦3                             | ≦1       |
| Micro Backlash P0        | arcmin                  | 2     | 12-100               | ≦ 5                            | ≦ 5                                    | ≦ 5                            | ≦ 3      |
| Precision Backlash F     | 21 arcmin               | 1     | 3-10                 | ≦ 5                            | ≦ 5                                    | ≦ 5                            | ≦3       |
| T TECISIOTI Dackiasit I  | archini                 | 2     | 12-100               | ≦ 7                            | ≦ 7                                    | ≦ 7                            | ≦ 5      |
| Standard Backlash F      | 2 arcmin                | 1     | 3-10                 | ≦ 7                            | ≦ 7                                    | ≦ 7                            | ≦ 5      |
|                          |                         | 2     | 12-100               | ≦ 9                            | ≦ 9                                    | ≦ 9                            | ≦ 7      |
| Torsional Rigidity       | N • m<br>/arcmin        | 1,2   | 3-100                | 6                              | 12                                     | 28                             | 75       |
| Max. Bending Mome        | ent N • m               | 1,2   | 3-100                | 22.5                           | 36                                     | 76                             | 140      |
| Max. Axial Load          | N                       | 1,2   | 3-100                | 465                            | 635                                    | 1060                           | 1580     |
| Operating Temp.          | °C                      |       | 3-100                |                                |                                        | ~+90 °C                        |          |
| Service Life             | hr                      |       | 3-100                | 2                              |                                        | ntinuous operatio              | n)       |
| Efficiency               | %                       | 1     | 3-10                 |                                |                                        | 97%                            |          |
|                          | , , ,                   | 2     | 12-100               |                                |                                        | 94%                            |          |
| Weight                   | kg                      | 1     | 3-10                 | 0.7                            | 1.4                                    | 3.2                            | 6.0      |
|                          |                         | 2     | 12-100               | 1.1                            | 2.2/1.7                                | 5.9/4.0                        | 7.9      |
| Mounting Position        |                         | 1,2   | 3-100                | 5.0                            |                                        | irection                       |          |
| Noise Level <sup>2</sup> | dBA/1m                  | 1,2   | 3-100                | 56                             | 58                                     | 60                             | 63       |
| Protection Class         | -                       | 1,2   | 3-100                |                                |                                        | P65                            |          |
| Lubrication              | -                       | 1,2   | 3-100                |                                | Synthetic                              | Lubricant                      |          |
|                          |                         |       | Inertia(             | J1)                            |                                        |                                |          |
| Stage                    | Ratio                   |       | unit                 | PGF-42                         | PGF-60                                 | PGF-90                         | PGF-115  |
|                          | 3                       |       |                      | -                              | 0.19                                   | 0.72                           | 2.35     |
|                          | 4                       |       |                      | 0.02                           | 0.18                                   | 0.67                           | 1.66     |
| 1                        | 5                       |       |                      | 0.02                           | 0.17                                   | 0.65                           | 1.50     |
| ,                        |                         |       |                      | 0.02                           | 0.14                                   | 0.60                           | 1.45     |
|                          | 7                       |       |                      |                                |                                        | 0.58                           | 1.41     |
|                          | 10                      |       | Kg • cm <sup>2</sup> | 0.02                           | 0.14                                   |                                |          |
| Stage                    |                         |       | Kg • cm²             | 0.02<br>PGF-42                 | 0.14<br>PGF-60(T)                      | PGF-90(T)                      | PGF-115T |
|                          | 10<br>Ratio<br>15/20/25 |       | Kg • cm²             |                                |                                        |                                |          |
| Stage 2                  | 10<br>Ratio             |       | Kg • cm²             | PGF-42                         | PGF-60(T)                              | PGF-90(T)                      | PGF-115T |

<sup>\* 1.</sup> Applied to the output shaft center @100rpm.
\* 2. Measured at 3000rpm with no load
% The above figures/specifications are subject to change without prior notice.

## **PLANETARY GEARHEADS**



H H

PHFR Series

PHF Series

PGH Series

PUR

PGLH

Series PGL

PGC

PGE

T T

· 另

GFR

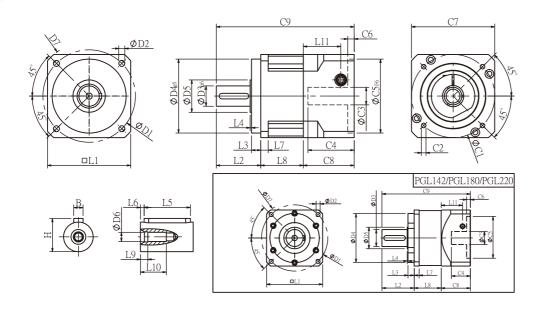
T

PEC

PE PE

PBC

PBI

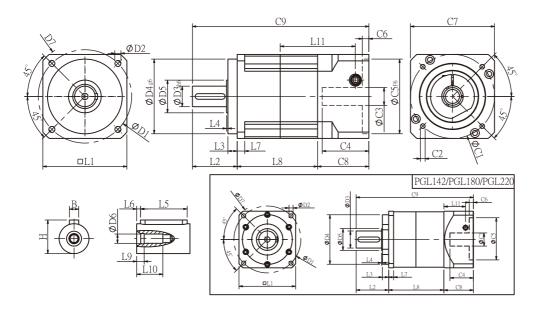

PAE







# PEL Single Stage Dimensions




## Specifications

| Dimensions         | PEL42   | PEL60       | PEL90    | PEL115                   | PEL142      | PEL180      | PEL220      |
|--------------------|---------|-------------|----------|--------------------------|-------------|-------------|-------------|
| D1                 | 50      | 70          | 100      | 130                      | 165         | 215         | 250         |
| D2                 | 3.4     | 5.5         | 6.5      | 8.5                      | 10.5        | 13          | 17          |
| D3 h6              | 13      | 16          | 22       | 32                       | 40          | 55          | 75          |
| D4 g6              | 35      | 50          | 80       | 110                      | 130         | 160         | 180         |
| D5                 | 15      | 25          | 35       | 45                       | 50          | 70          | 90          |
| D6                 | M4x0.7P | M5x0.8P     | M8x1.25P | M12x1.75P                | M16x2.0P    | M20x2.5P    | M20x2.5P    |
| D7                 | 56      | 80          | 118      | 148                      | 186         | 239         | 292         |
| L1                 | 42.6    | 60          | 90       | 115                      | 142         | 182         | 220         |
| L2                 | 26      | 37          | 48       | 62                       | 93          | 104.5       | 138         |
| L3                 | 5.5     | 7           | 10       | 8                        | 8           | 20          | 30          |
| L4                 | 1.5     | 1.5         | 1.5      | 3                        | 6           | 2.5         | 3           |
| L5                 | 15      | 25          | 32       | 40                       | 60          | 70          | 90          |
| L6                 | 2       | 2           | 3        | 5                        | 5           | 6           | 7           |
| L7                 | 4       | 6           | 8        | 12                       | 18          | 16          | 20          |
| L8                 | 28.3    | 36          | 46       | 59                       | 79          | 87.5        | 117.5       |
| L9                 | 4       | 4           | 4.5      | 6                        | 6           | 8           | 7           |
| L10                | 14      | 16.5        | 20.5     | 30                       | 38          | 48          | 42          |
| L11                | 29      | 35.5        | 40.5     | 42                       | 63          | 69.5        | 102.2       |
| C1 <sup>2</sup>    | 46      | 70          | 90       | 115                      | 145         | 200         | 235         |
| C2 <sup>2</sup>    | M4x0.7P | M5x0.8P     | M6x1.0P  | M8x1.25P                 | M8x1.25P    | M12x1.75P   | M12x1.75P   |
| C3 <sup>2</sup>    | ≦8      | <u>≤</u> 14 | ≦19/≦24  | <u>≤</u> 24/ <u>≤</u> 28 | <u>≤</u> 35 | <u>≤</u> 50 | <u>≤</u> 55 |
| C4 <sup>2</sup>    | 27      | 37          | 47       | 58                       | 66          | 82          | 98          |
| C5 <sup>2</sup> F6 | 30      | 50          | 70       | 95                       | 110         | 114.3       | 200         |
| C6 <sup>2</sup>    | 4       | 4           | 6        | 10                       | 6           | 13          | 12          |
| C7 <sup>2</sup>    | 42.6    | 60          | 90       | 115                      | 140         | 182         | 220         |
| C8 <sup>2</sup>    | 38.5    | 46          | 55       | 63                       | 80          | 95          | 130         |
| C9 <sup>2</sup>    | 92.8    | 119         | 149      | 184                      | 252         | 287         | 385.5       |
| В                  | 5       | 5           | 6        | 10                       | 12          | 16          | 20          |
| Н                  | 15      | 18          | 24.5     | 35                       | 43          | 59          | 79.5        |

 $<sup>\</sup>star$  C1~C9 are motor specific dimensions(metric std shown ),Size may vary according to the motor flange chosen.

 $<sup>\</sup>bigstar$  Specification subject to change without notice.



# Specifications

### Unit:mm

| Dimensions         | PEL42   | PEL60   | PEL90    | PEL115                   | PEL142      | PEL180      | PEL220      |
|--------------------|---------|---------|----------|--------------------------|-------------|-------------|-------------|
| D1                 | 50      | 70      | 100      | 130                      | 165         | 215         | 250         |
| D2                 | 3.4     | 5.5     | 6.5      | 8.5                      | 10.5        | 13          | 17          |
| D3 h6              | 13      | 16      | 22       | 32                       | 40          | 55          | 75          |
| D4 g6              | 35      | 50      | 80       | 110                      | 130         | 160         | 180         |
| D5                 | 15      | 25      | 35       | 45                       | 50          | 70          | 90          |
| D6                 | M4x0.7P | M5x0.8P | M8x1.25P | M12x1.75P                | M16x2.0P    | M20x2.5P    | M20x2.5P    |
| D7                 | 56      | 80      | 118      | 148                      | 186         | 239         | 292         |
| L1                 | 42.6    | 60      | 90       | 115                      | 142         | 182         | 220         |
| L2                 | 26      | 37      | 48       | 62                       | 93          | 104.5       | 138         |
| L3                 | 5.5     | 7       | 10       | 8                        | 8           | 20          | 30          |
| L4                 | 1.5     | 1.5     | 1.5      | 3                        | 6           | 2.5         | 3           |
| L5                 | 15      | 25      | 32       | 40                       | 60          | 70          | 90          |
| L6                 | 2       | 2       | 3        | 5                        | 5           | 6           | 7           |
| L7                 | 4       | 6       | 8        | 12                       | 18          | 16          | 20          |
| L8                 | 54.3    | 64      | 86       | 107                      | 140         | 177.5       | 232         |
| L9                 | 4       | 4       | 4.5      | 6                        | 6           | 8           | 7           |
| L10                | 14      | 16.5    | 20.5     | 30                       | 38          | 48          | 42          |
| L11                | 29      | 35.5    | 40.5     | 42                       | 63          | 69.5        | 102.2       |
| C1 <sup>2</sup>    | 46      | 70      | 90       | 115                      | 145         | 200         | 235         |
| C2 <sup>2</sup>    | M4x0.7P | M5x0.8P | M6x1.0P  | M8x1.25P                 | M8x1.25P    | M12x1.75P   | M12x1.75P   |
| C3 <sup>2</sup>    | ≦8      | ≦14     | ≦19/≦24  | <u>≤</u> 24/ <u>≤</u> 28 | <u>≤</u> 35 | <u>≤</u> 50 | <u>≤</u> 55 |
| C4 <sup>2</sup>    | 27      | 37      | 47       | 58                       | 66          | 82          | 98          |
| C5 <sup>2</sup> F6 | 30      | 50      | 70       | 95                       | 110         | 114.3       | 200         |
| C6 <sup>2</sup>    | 4       | 4       | 6        | 10                       | 6           | 13          | 12          |
| C7 <sup>2</sup>    | 42.6    | 60      | 90       | 115                      | 140         | 182         | 220         |
| C8 <sup>2</sup>    | 38.5    | 46      | 55       | 63                       | 80          | 95          | 130         |
| C9 <sup>2</sup>    | 118.8   | 147     | 189      | 232                      | 313         | 377         | 500         |
| В                  | 5       | 5       | 6        | 10                       | 12          | 16          | 20          |
| Н                  | 15      | 18      | 24.5     | 35                       | 43          | 59          | 79.5        |

 $<sup>\</sup>star$  C1~C9 are motor specific dimensions(metric std shown ), Size may vary according to the motor flange chosen.

Serie I

PHF

PHF

PGH

PUR

Series

H

S 🗩

\_\_\_\_ کے کے

PGRH

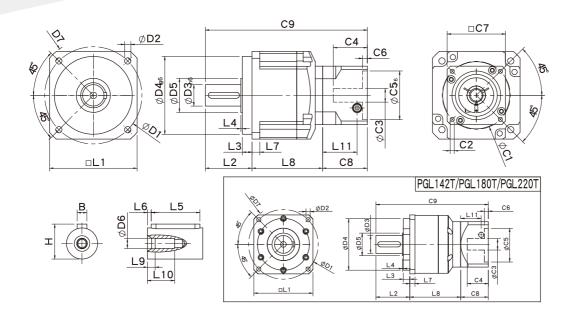
Ğ

3 分

Serie PE(

S P.

s —


PBC Series

beries .

Spries

 $<sup>\</sup>star$  Specification subject to change without notice.

## PEL Double Stage Dimensions-2



## Specifications

| Dimensions         | PEL60T  | PEL90T      | PEL115T                  | PEL142T                  | PEL180T     | PEL220T     |
|--------------------|---------|-------------|--------------------------|--------------------------|-------------|-------------|
| D1                 | 70      | 100         | 130                      | 165                      | 215         | 250         |
| D2                 | 5.5     | 6.5         | 8.5                      | 10.5                     | 13          | 17          |
| D3 h6              | 16      | 22          | 32                       | 40                       | 55          | 75          |
| D4 <sub>g6</sub>   | 50      | 80          | 110                      | 130                      | 160         | 180         |
| D5                 | 25      | 35          | 45                       | 50                       | 70          | 90          |
| D6                 | M5x0.8P | M8x1.25P    | M12x1.75P                | M16x2.0P                 | M20x2.5P    | M20x2.5P    |
| D7                 | 80      | 118         | 148                      | 186                      | 239         | 292         |
| L1                 | 60      | 90          | 115                      | 142                      | 182         | 220         |
| L2                 | 37      | 48          | 62                       | 93                       | 104.5       | 138         |
| L3                 | 7       | 10          | 8                        | 8                        | 20          | 30          |
| L4                 | 1.5     | 1.5         | 3                        | 6                        | 2.5         | 3           |
| L5                 | 25      | 32          | 40                       | 60                       | 70          | 90          |
| L6                 | 2       | 3           | 5                        | 5                        | 6           | 7           |
| L7                 | 6       | 8           | 12                       | 18                       | 16          | 20          |
| L8                 | 58.8    | 72.5        | 97.4                     | 127                      | 157         | 199.5       |
| L9                 | 4       | 4.5         | 6                        | 6                        | 8           | 7           |
| L10                | 16.5    | 20.5        | 30                       | 38                       | 48          | 42          |
| L11                | 29      | 35.5        | 40.5                     | 42                       | 63          | 69.5        |
| C1 <sup>2</sup>    | 46      | 70          | 90                       | 115                      | 145         | 200         |
| C2 <sup>2</sup>    | M4x0.7P | M5x0.8P     | M6x1.0P                  | M8x1.25P                 | M8x1.25P    | M12x1.75P   |
| C3 <sup>2</sup>    | ≦8      | <u>≤</u> 14 | <u>≤</u> 19/ <u>≤</u> 24 | <u>≤</u> 24/ <u>≤</u> 28 | <u>≤</u> 35 | <u>≤</u> 50 |
| C4 <sup>2</sup>    | 27      | 37          | 47                       | 58                       | 66          | 82          |
| C5 <sup>2</sup> F6 | 30      | 50          | 70                       | 95                       | 110         | 114.3       |
| C6 <sup>2</sup>    | 4       | 4           | 6                        | 10                       | 6           | 13          |
| C7 <sup>2</sup>    | 42.6    | 60          | 90                       | 115                      | 140         | 182         |
| C8 <sup>2</sup>    | 38.5    | 46          | 55                       | 63                       | 80          | 95          |
| C9 <sup>2</sup>    | 134.3   | 166.5       | 214.4                    | 283                      | 341.5       | 432.5       |
| В                  | 5       | 6           | 10                       | 12                       | 16          | 20          |
| Н                  | 18      | 24.5        | 35                       | 43                       | 59          | 79.5        |

 $<sup>\</sup>star$  C1~C9 are motor specific dimensions(metric std shown ), Size may vary according to the motor flange chosen.

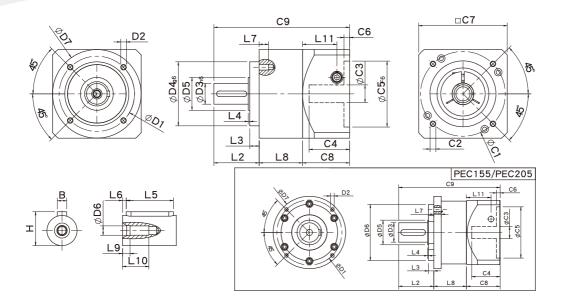
 $<sup>\</sup>bigstar$  Specification subject to change without notice.

### **PLANETARY GEARHEADS**

## PEL Specifications Table

| Specif           | ications            |                  | Stage | Ratio           | PEL-42                                                                                         | PEL-60       | PEL-90       | PEL-115           | PEL-142       | PEL-180    | PEL-220           |
|------------------|---------------------|------------------|-------|-----------------|------------------------------------------------------------------------------------------------|--------------|--------------|-------------------|---------------|------------|-------------------|
|                  |                     |                  |       | 3               | 13.8                                                                                           | 44.2         | 95.2         | 283               | 482           | 1151       | 1670              |
|                  |                     |                  |       | 4               | 11.9                                                                                           | 35.9         | 74.6         | 249               | 490           | 1055       | 1574              |
|                  |                     |                  |       | 5               | 13.8                                                                                           | 43.0         | 95.2         | 283               | 473           | 1151       | 1670              |
|                  |                     |                  | 1     | 6               | 12.5                                                                                           | 39.4         | 90.9         | 266               | 436           | 1055       | 1574              |
|                  |                     |                  | 1     | 7               | 11.9                                                                                           | 36.0         | 85.6         | 219               | 400           | 1055       | 1574              |
|                  |                     |                  |       | 8               | 10.9                                                                                           | 32.4         | 85.0         | 216               | 363           | 860        | 1184              |
|                  |                     |                  |       | 9               | 9.8                                                                                            | 28.7         | 80.0         | 210               | 320           | 764        | 1185              |
|                  |                     |                  |       | 10              | 10.1                                                                                           | 25.0         | 75.0         | 210               | 320           | 763        | 1184              |
|                  |                     |                  | Stage | Ratio           | PEL-42                                                                                         | PEL-60 (T)   | PEL-90(T)    | PEL-115(T)        | PEL-142(T)    | PEL-180(T) | PEL-220(T)        |
|                  |                     |                  |       | 15              | 13.8                                                                                           | 44.2         | 95.2         | 283               | 482           | 1151       | 1670              |
| Nominal Output T | orque               | N • m            |       | 20              | 11.9                                                                                           | 35.9         | 74.6         | 249               | 490           | 1055       | 1574              |
|                  | onmar output rorquo |                  |       | 25              | 13.8                                                                                           | 43.0         | 95.2         | 283               | 473           | 1151       | 1670              |
|                  |                     |                  |       | 30              | 13.8                                                                                           | 43.0         | 95.2         | 283               | 473           | 1151       | 1670              |
|                  |                     |                  |       | 35              | 13.8                                                                                           | 43.0         | 95.2         | 283               | 473           | 1151       | 1670              |
|                  |                     |                  |       | 40              | 13.8                                                                                           | 43.0         | 95.2         | 283               | 473           | 1151       | 1670              |
|                  |                     |                  |       | 45              | 13.8                                                                                           |              |              |                   | 473           |            | 1670              |
|                  |                     |                  | 2     | 50              |                                                                                                | 43.0         | 95.2         | 283               |               | 1151       |                   |
|                  |                     |                  |       |                 | 13.8                                                                                           | 43.0         | 95.2         | 283               | 473           | 990        | 1670              |
|                  |                     |                  | 60    | 12.5            | 39.4                                                                                           | 90.9         | 266          | 436               | 1055          | 1574       |                   |
|                  |                     |                  | 70    | 11.9            | 36.0                                                                                           | 85.6         | 219          | 400               | 1055          | 1574       |                   |
|                  |                     |                  |       | 80              | 10.9                                                                                           | 32.4         | 85.0         | 216               | 363           | 860        | 1184              |
|                  |                     |                  |       | 90              | 9.8                                                                                            | 28.7         | 80.0         | 210               | 320           | 764        | 1185              |
|                  |                     |                  |       | 100             | 10.1                                                                                           | 25.0         | 75.0         | 210               | 320           | 763        | 1184              |
| Emergency Stop T | orque               | N • m            |       |                 | 3.0 times of Nominal Output Torque<br>(* Max. Output Torque T2B =60% of Emergency Stop Torque) |              |              |                   |               |            |                   |
| Nominal Input S  | peed                | rpm              | 1,2   | 3-100           | 3000                                                                                           | 3000         | 3000         | 2500              | 2000          | 2000       | 2000              |
| Max. Input Spe   | eed                 | rpm              | 1,2   | 3-100           | 6000                                                                                           | 6000         | 6000         | 5000              | 4000          | 4000       | 4000              |
|                  |                     |                  | 1     | 3-10            | ≦ 12                                                                                           | <u>≦</u> 9   | ≦9           | <u>≦</u> 7        | <u>≤</u> 7    | <u>≦</u> 7 | <u>≦</u> 7        |
| Backlash         |                     | arcmin           | 2     | 12-100          | ≤ 15                                                                                           | ≤ <b>1</b> 2 | ≤ 12         | = <i>7</i><br>≦ 9 | _ ,<br>≦ 9    | _ ,<br>≦ 9 | = <i>r</i><br>≦ 9 |
| Torsional Rigic  | lity                | N • m<br>/arcmin | 1,2   | 3-100           | 1.0                                                                                            | 2.8          | 7.5          | 15.5              | 30            | 57         | 110               |
| Max. Radial Lo   | ad                  | N                | 1,2   | 3-100           | 350                                                                                            | 960          | 1630         | 3380              | 6150          | 7260       | 11120             |
| Max. Axial Loa   | ad                  | N                | 1,2   | 3-100           | 320                                                                                            | 900          | 1420         | 2930              | 5510          | 5550       | 8560              |
| Operating Ten    | nn                  | °C               |       | 3-100           |                                                                                                |              |              | -10 °C ~+90 °     | ····          |            |                   |
| Service Life     | •                   |                  |       | 3-100           |                                                                                                |              |              | 000/ Continuo     |               | `          |                   |
| Service Life     |                     | hr               | 1     | 3-100           |                                                                                                |              | 20,000 (10,0 |                   | ius operation | )          |                   |
| Efficiency       |                     | %                | 1     | 1               |                                                                                                |              |              | ≥ 95%             |               |            |                   |
| · ·              |                     |                  | 2     | 12-100          |                                                                                                |              |              | ≧ 90%             |               |            |                   |
| Weight           |                     | kg               | 1     | 3-10            | 0.6                                                                                            | 1.2          | 3.2          | 7.5               | 15.6          | 26         | 56                |
|                  |                     | J                | 2     | 12-100          | 0.8                                                                                            | 1.9/1.5      | 5.3/3.6      | 12/8.8            | 20.7/17.2     | 36/31      | 80/62             |
| Mounting Posit   |                     | -                | 1,2   | 3-100           |                                                                                                |              |              | Any direction     |               |            |                   |
| Noise Level      | 2                   | dBA/1m           | 1,2   | 3-100           | ≦ 65                                                                                           | ≦ 67         | ≦ 70         | ≦ 70              | ≦ 75          | ≦ 75       | ≦ 80              |
| Protection Cla   | iss                 | -                | 1,2   | 3-100           |                                                                                                |              |              | IP65              |               |            |                   |
| Lubrication      |                     | _                | 1,2   | 3-100           |                                                                                                |              |              | Urea derivativ    | 'es           |            |                   |
|                  |                     |                  |       | 0 200           | lnor                                                                                           | tia(J1)      |              |                   |               |            |                   |
| S.               |                     |                  |       | •.              |                                                                                                | . ,          | DE: CT       | DE: 1:-           | DE: 4:-       | DE: 4.5.5  | D=1               |
| Stage            | R                   | atio             | ur    | nit             | PEL-42                                                                                         | PEL-60       | PEL-90       | PEL-115           | PEL-142       | PEL-180    | PEL-220           |
|                  |                     | 3                |       |                 | 0.03                                                                                           | 0.20         | 0.81         | 2.20              | 7.89          | 25.2       | 77.9              |
|                  |                     | 4                |       |                 | 0.03                                                                                           | 0.16         | 0.65         | 1.80              | 5.83          | 19.8       | 56.5              |
| 1                |                     | 5                |       |                 | 0.03                                                                                           | 0.15         | 0.62         | 1.61              | 5.38          | 18.3       | 53.3              |
|                  |                     | 7/8              |       |                 | 0.03                                                                                           | 0.14         | 0.60         | 1.55              | 5.22          | 17.8       | 53.0              |
|                  |                     | 9/10             | Kg ∙  | cm <sup>2</sup> | 0.03                                                                                           | 0.14         | 0.60         | 1.53              | 5.20          | 17.6       | 52.9              |
| Stage            | R                   | atio             |       |                 | PEL-42                                                                                         | PEL-60(T)    | PEL-90(T)    | PEL-115(T)        | PEL-142(T)    | PEL-180(T) | PEL-220(1         |
|                  | 15,                 | /20/25           |       |                 | 0.02                                                                                           | 0.15(0.02)   | 0.62(0.15)   | 1.61(0.62)        | 5.38(1.61)    | 18.3(5.38) | 53.9(18.3)        |
|                  |                     |                  | 1     |                 | 0.00                                                                                           | 0.4.4(0.00)  | 0.60(0.14)   | 1.55(0.60)        | E 00(4 EE)    | 47.0(5.00) | E2 0/4 = 0)       |
| 2                | 30,                 | /35/40           |       |                 | 0.02                                                                                           | 0.14(0.02)   | 0.60(0.14)   | 1.55(0.60)        | 5.22(1.55)    | 17.8(5.22) | 53.0(17.8)        |

<sup>\* 1.</sup> Applied to the output shaft center @100rpm. \* 2. Measured at 3000rpm with no load


 $<sup>\</sup>ensuremath{\mathbb{X}}$  The above figures/specifications are subject to change without prior notice.



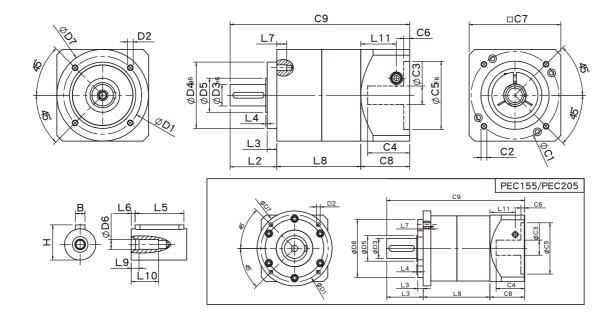




### PEC Single Stage Dimensions



# Specifications


| Dimensions                    | PEC50   | PEC70   | PEC90                    | PEC120                   | PEC155      | PEC205      |
|-------------------------------|---------|---------|--------------------------|--------------------------|-------------|-------------|
| D1                            | 44      | 62      | 80                       | 108                      | 140         | 184         |
| D2                            | M4x0.7P | M5x0.8P | M6x1.0P                  | M8x1.25P                 | M10x1.5P    | M12x1.75P   |
| D3 h6                         | 13      | 16      | 22                       | 32                       | 40          | 55          |
| D4 g6                         | 35      | 52      | 68                       | 90                       | 120         | 160         |
| D5                            | 15      | 25      | 35                       | 45                       | 50          | 70          |
| D6                            | M4x0.7P | M5x0.8P | M8x1.25P                 | M12x1.75P                | M16x2.0P    | M20x2.5P    |
| D7                            | 50      | 70      | 94                       | 120                      | 155         | 205         |
| L2                            | 24.5    | 35      | 48                       | 60                       | 93          | 99.5        |
| L3                            | 4       | 5       | 10                       | 6                        | 8           | 15          |
| L4                            | 1.5     | 1.5     | 1.5                      | 3                        | 6           | 2.5         |
| L5                            | 15      | 25      | 32                       | 40                       | 60          | 70          |
| L6                            | 2       | 2       | 3                        | 5                        | 5           | 6           |
| L7                            | 8       | 10      | 10                       | 15                       | 18          | 21          |
| L8                            | 30      | 38      | 46                       | 61                       | 79          | 92.5        |
| L9                            | 4       | 4       | 4.5                      | 6                        | 6           | 8           |
| L10                           | 14      | 16.5    | 20.5                     | 30                       | 38          | 48          |
| L11                           | 24.4    | 31.5    | 36.5                     | 42                       | 63          | 69.5        |
| C1 <sup>2</sup>               | 46      | 70      | 90                       | 115                      | 145         | 200         |
| C2 <sup>2</sup>               | M4x0.7P | M5x0.8P | M6x1.0P                  | M8x1.25P                 | M8x1.25P    | M12x1.75P   |
| C3 <sup>2</sup>               | ≦8      | ≦14     | <i>≦</i> 19/ <i>≦</i> 24 | <i>≦</i> 24/ <i>≦</i> 28 | <u>≤</u> 35 | <u>≤</u> 50 |
| C4 <sup>2</sup>               | 27      | 35      | 43                       | 58                       | 66          | 82          |
| C5 <sup>2</sup> <sub>F6</sub> | 30      | 50      | 70                       | 95                       | 110         | 114.3       |
| C6 <sup>2</sup>               | 4       | 5       | 5                        | 8                        | 6           | 13          |
| C7 <sup>2</sup>               | 50      | 70      | 94                       | 120                      | 140         | 182         |
| C8 <sup>2</sup>               | 34      | 44      | 50                       | 63                       | 80          | 95          |
| C9 <sup>2</sup>               | 88.5    | 117     | 144                      | 184                      | 252         | 287         |
| В                             | 5       | 5       | 6                        | 10                       | 12          | 16          |
| Н                             | 15      | 18      | 24.5                     | 35                       | 43          | 59          |

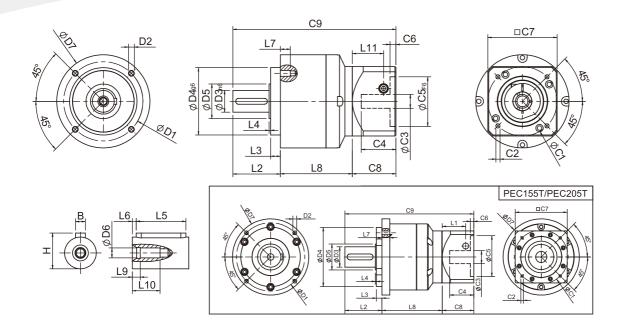
 $<sup>\</sup>bigstar \ \text{C1} \sim \text{C9 are motor specific dimensions(metric std shown ), Size may vary according to the motor flange chosen.}$ 

 $<sup>\</sup>bigstar$  Specification subject to change without notice.

# Series

### PEC Double Stage Dimensions-1




### Specifications

| Dimensions                    | PEC50   | PEC70   | PEC90    | PEC120    | PEC155   | PEC205      |
|-------------------------------|---------|---------|----------|-----------|----------|-------------|
| D1                            | 44      | 62      | 80       | 108       | 140      | 184         |
| D2                            | M4x0.7P | M5x0.8P | M6x1.0P  | M8x1.25P  | M10x1.5P | M12x1.75P   |
| D3 h6                         | 13      | 16      | 22       | 32        | 40       | 55          |
| D4 <sub>g6</sub>              | 35      | 52      | 68       | 90        | 120      | 160         |
| D5                            | 15      | 25      | 35       | 45        | 50       | 70          |
| D6                            | M4x0.7P | M5x0.8P | M8x1.25P | M12x1.75P | M16x2.0P | M20x2.5P    |
| D7                            | 50      | 70      | 94       | 120       | 155      | 205         |
| L2                            | 24.5    | 35      | 48       | 60        | 93       | 99.5        |
| L3                            | 4       | 5       | 10       | 6         | 8        | 15          |
| L4                            | 1.5     | 1.5     | 1.5      | 3         | 6        | 2.5         |
| L5                            | 15      | 25      | 32       | 40        | 60       | 70          |
| L6                            | 2       | 2       | 3        | 5         | 5        | 6           |
| L7                            | 8       | 10      | 10       | 15        | 18       | 21          |
| L8                            | 56      | 66      | 86       | 109       | 140      | 182.5       |
| L9                            | 4       | 4       | 4.5      | 6         | 6        | 8           |
| L10                           | 14      | 16.5    | 20.5     | 30        | 38       | 48          |
| L11                           | 24.4    | 31.5    | 36.5     | 42        | 63       | 69.5        |
| C1 <sup>2</sup>               | 46      | 70      | 90       | 115       | 145      | 200         |
| C2 <sup>2</sup>               | M4x0.7P | M5x0.8P | M6x1.0P  | M8x1.25P  | M8x1.25P | M12x1.75P   |
| C3 <sup>2</sup>               | ≦8      | ≦14     | ≦19/≦24  | ≦24/≦28   | ≦35      | <u>≤</u> 50 |
| C4 <sup>2</sup>               | 27      | 35      | 43       | 58        | 66       | 82          |
| C5 <sup>2</sup> <sub>F6</sub> | 30      | 50      | 70       | 95        | 110      | 114.3       |
| C6 <sup>2</sup>               | 4       | 5       | 5        | 8         | 6        | 13          |
| C7 <sup>2</sup>               | 50      | 70      | 94       | 120       | 140      | 182         |
| C8 <sup>2</sup>               | 34      | 44      | 50       | 63        | 80       | 95          |
| C9 <sup>2</sup>               | 114.5   | 145     | 184      | 232       | 313      | 377         |
| В                             | 5       | 5       | 6        | 10        | 12       | 16          |
| Н                             | 15      | 18      | 24.5     | 35        | 43       | 59          |

<sup>★</sup> C1~C9 are motor specific dimensions(metric std shown ), Size may vary according to the motor flange chosen.

 $<sup>\</sup>star$  Specification subject to change without notice.

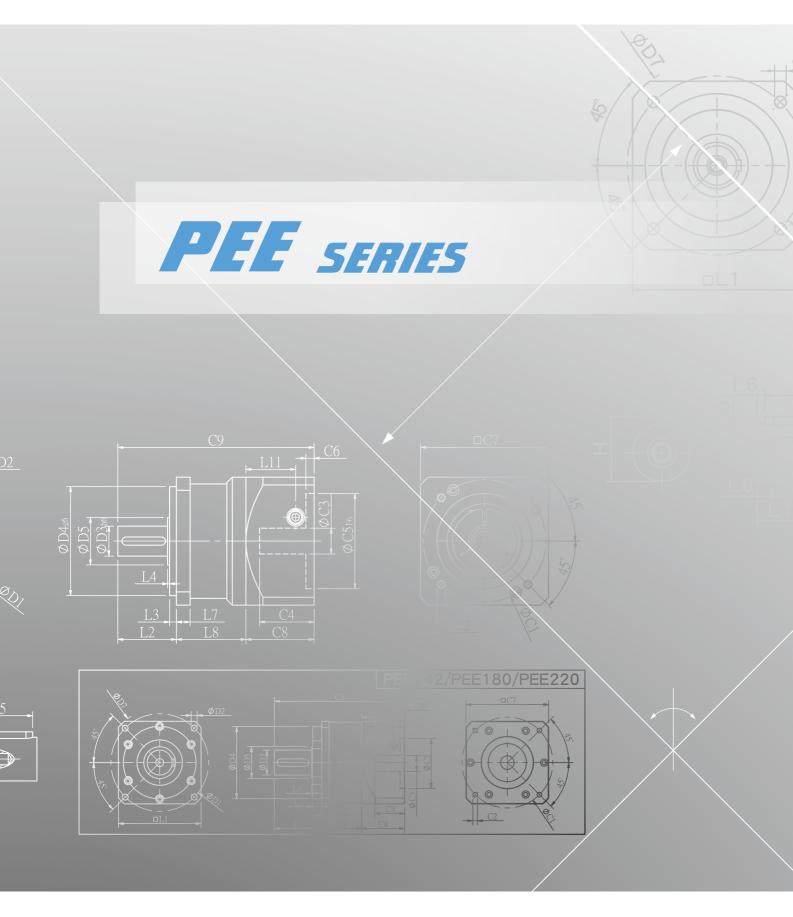
# PEC Double Stage Dimensions-2

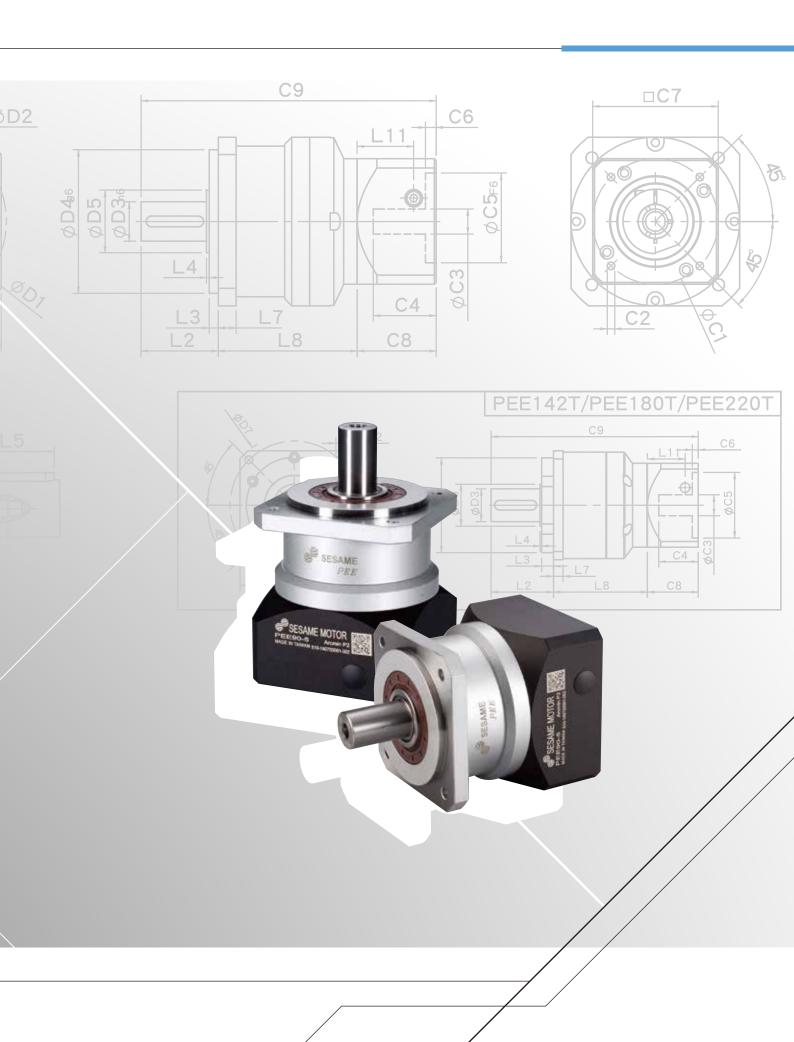


# Specifications

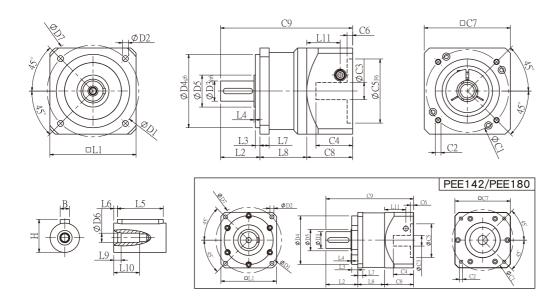
| Dimensions         | PEC70T  | PEC90T      | PEC120T   | PEC155T                  | PEC205T   |
|--------------------|---------|-------------|-----------|--------------------------|-----------|
| D1                 | 62      | 80          | 108       | 140                      | 184       |
| D2                 | M5x0.8P | M6x1.0P     | M8x1.25P  | M10x1.5P                 | M12x1.75P |
| D3 h6              | 16      | 22          | 32        | 40                       | 55        |
| D4 <sub>g6</sub>   | 52      | 68          | 90        | 120                      | 160       |
| D5                 | 25      | 35          | 45        | 50                       | 70        |
| D6                 | M5x0.8P | M8x1.25P    | M12x1.75P | M16x2.0P                 | M20x2.5P  |
| D7                 | 70      | 94          | 120       | 155                      | 205       |
| L2                 | 35      | 48          | 60        | 93                       | 99.5      |
| L3                 | 5       | 10          | 6         | 8                        | 15        |
| L4                 | 1.5     | 1.5         | 3         | 6                        | 2.5       |
| L5                 | 25      | 32          | 40        | 60                       | 70        |
| L6                 | 2       | 3           | 5         | 5                        | 6         |
| L7                 | 10      | 10          | 15        | 18                       | 21        |
| L8                 | 60.8    | 70.5        | 99.4      | 127                      | 162       |
| L9                 | 4       | 4.5         | 6         | 6                        | 8         |
| L10                | 16.5    | 20.5        | 30        | 38                       | 48        |
| L11                | 29      | 35.5        | 40.5      | 42                       | 63        |
| C1 <sup>2</sup>    | 46      | 70          | 90        | 115                      | 145       |
| C2 <sup>2</sup>    | M4x0.7P | M5x0.8P     | M6x1.0P   | M8x1.25P                 | M8x1.25P  |
| C3 <sup>2</sup>    | ≦8      | <u>≤</u> 14 | ≦19/≦24   | <u>≤</u> 24/ <u>≤</u> 28 | ≦35       |
| C4 <sup>2</sup>    | 28.5    | 41          | 47.75     | 58                       | 66        |
| C5 <sup>2</sup> F6 | 30      | 50          | 70        | 95                       | 110       |
| C6 <sup>2</sup>    | 5.5     | 8           | 6         | 8                        | 6         |
| C7 <sup>2</sup>    | 50      | 70          | 94        | 120                      | 140       |
| C8 <sup>2</sup>    | 40      | 50          | 55        | 63                       | 80        |
| C9 <sup>2</sup>    | 135.8   | 170.5       | 214.4     | 283                      | 341.5     |
| В                  | 5       | 6           | 10        | 12                       | 16        |
| Н                  | 18      | 24.5        | 35        | 43                       | 59        |

 $<sup>\</sup>star$  C1~C9 are motor specific dimensions(metric std shown ), Size may vary according to the motor flange chosen.


 $<sup>\</sup>bigstar$  Specification subject to change without notice.


# PEC Specifications Table

| Specifi                  | ications   |                  | Stage | Ratio           | PEC-50    | PEC-70     | PEC-90         | PEC-120                         | PEC-155     | PEC-205     |
|--------------------------|------------|------------------|-------|-----------------|-----------|------------|----------------|---------------------------------|-------------|-------------|
|                          |            |                  |       | 3               | 13.8      | 44.2       | 95.2           | 283                             | 482         | 1151        |
|                          |            |                  |       | 4               | 11.9      | 35.9       | 74.6           | 249                             | 490         | 1055        |
|                          |            |                  | 1     | 5               | 13.8      | 43.0       | 95.2           | 283                             | 473         | 1151        |
|                          |            |                  |       | 7               | 11.9      | 36.0       | 85.6           | 219                             | 400         | 1055        |
|                          |            |                  |       | 10              | 10.1      | 25.0       | 75.0           | 210                             | 320         | 763         |
|                          |            |                  | Stage | Ratio           | PEC-50    | PEC-70(T)  | PEC-90(T)      | PEC-120(T)                      | PEC-155(T)  | PEC-205(T)  |
| Name in al Octobro A.    | orgue N. m | NI               |       | 15              | 13.8      | 44.2       | 95.2           | 283                             | 482         | 1151        |
| Nominal Output To        | orque      | N•m              |       | 20              | 11.9      | 35.9       | 74.6           | 249                             | 490         | 1055        |
|                          |            |                  |       | 25              | 13.8      | 43.0       | 95.2           | 283                             | 473         | 1151        |
|                          |            |                  |       | 30              | 13.8      | 43.0       | 95.2           | 283                             | 473         | 1151        |
|                          |            |                  | 2     | 35              | 13.8      | 43.0       | 95.2           | 283                             | 473         | 1151        |
|                          |            |                  | 2     | 40              | 13.8      | 43.0       | 95.2           | 283                             | 473         | 1151        |
|                          |            |                  |       | 50              | 13.8      | 43.0       | 95.2           | 283                             | 473         | 1151        |
|                          |            |                  |       | 70              | 11.9      | 36.0       | 85.6           | 219                             | 400         | 1055        |
|                          |            |                  |       | 100             | 10.1      | 25.0       | 75.0           | 219                             | 320         | 763         |
|                          |            |                  |       | 100             | 10.1      |            |                |                                 |             | /63         |
| Emergency Stop To        | orque      | N • m            |       |                 | (* Ma     |            |                | Output Torque<br>of Emergency S |             |             |
| Nominal Input Sp         | peed       | rpm              | 1,2   | 3-100           | 3000      | 3000       | 3000           | 2500                            | 2000        | 2000        |
| Max. Input Spe           | ed         | rpm              | 1,2   | 3-100           | 6000      | 6000       | 6000           | 5000                            | 4000        | 4000        |
| Backlash                 |            | arcmin           | 1     | 3-10            | ≦12       | ≦ 9        | ≦ 9            | ≦ 7                             | ≦ 7         | ≦ 7         |
| Dackiasii                |            |                  | 2     | 12-100          | ≦ 15      | ≦ 12       | ≦ 12           | ≦ 9                             | ≦ 9         | ≦ 9         |
| Torsional Rigid          | ity        | N • m<br>/arcmin | 1,2   | 3-100           | 1.0       | 2.8        | 7.5            | 15.5                            | 30          | 57          |
| Max. Radial Loa          | ad         | N                | 1,2   | 3-100           | 350       | 960        | 1630           | 3380                            | 6150        | 7260        |
| Max. Axial Loa           | ıd         | N                | 1,2   | 3-100           | 320       | 900        | 1420           | 2930                            | 5510        | 5550        |
| Operating Tem            | ıp.        | °C               |       | 3-100           |           |            | -10 °C         | ~+90 °C                         |             |             |
| Service Life             |            | hr               |       | 3-100           |           | 20,0       | 00 (10,000/ Co | ntinuous opera                  | ation)      |             |
| Efficiency               |            | %                | 1 2   | 3-10<br>12-100  |           |            |                | 95%<br>90%                      |             |             |
|                          |            |                  | 1     | 3-10            | 0.7       | 1.4        | 3.0            | 7.3                             | 15.6        | 26          |
| Weight                   |            | kg               | 2     | 12-100          | 0.9       | 2.2/1.7    | 5.0/3.4        | 11.5/8.5                        | 20.7/17.2   | 36/31       |
| Mounting Positi          | ion        | -                | 1,2   | 3-100           |           | ,          |                | irection                        |             | ·           |
| Noise Level <sup>2</sup> |            | dBA/1m           | 1,2   | 3-100           | ≦ 65      | ≦ 67       | <u>≤</u> 70    | <u>≤</u> 70                     | <u>≤</u> 75 | <u>≤</u> 75 |
| Protection Clas          |            | _                | 1,2   | 3-100           |           |            |                | P65                             |             |             |
| Lubrication              |            | _                | 1,2   | 3-100           |           |            |                | erivatives                      |             |             |
| Zabrication              |            | 1                |       | 3 100           | Inertia(J | 11)        | 0100 00        |                                 |             |             |
| Stage                    |            | Ratio            | ur    | vi+             | PEC-50    | PEC-70     | PEC-90         | PEC-120                         | PEC-155     | PEC-205     |
| Stage                    |            | 3                | ur    | IIC             | 0.03      | 0.20       | 0.81           | 2.20                            | 7.89        | 25.2        |
| }                        |            | 4                |       |                 | 0.03      | 0.20       | 0.65           | 1.80                            | 5.83        | 19.8        |
| 1                        |            | 5                |       |                 | 0.03      | 0.15       | 0.62           | 1.61                            | 5.38        | 18.3        |
| <b>†</b>                 |            | 7                |       |                 | 0.03      | 0.14       | 0.60           | 1.55                            | 5.22        | 17.8        |
|                          |            | 10               | Kg•   | cm <sup>2</sup> | 0.03      | 0.14       | 0.60           | 1.53                            | 5.20        | 17.6        |
| Stage                    |            | Ratio            | 9     |                 | PEC-50    | PEC-70(T)  | PEC-90(T)      | PEC-120(T)                      | PEC-155(T)  | PEC-205(T)  |
|                          |            | 5/20/25          |       |                 | 0.02      | 0.15(0.02) | 0.62(0.15)     | 1.61(0.62)                      | 5.38(1.61)  | 18.3(5.38)  |
| 2                        | 30         | )/35/40          |       |                 | 0.02      | 0.14(0.02) | 0.60(0.14)     | 1.55(0.60)                      | 5.22(1.55)  | 17.8(5.22)  |
|                          | 50,        | /70/100          |       |                 | 0.02      | 0.14(0.02) | 0.60(0.14)     | 1.53(0.60)                      | 5.20(1.53)  | 17.6(5.20)  |


<sup>\* 1.</sup> Applied to the output shaft center @100rpm. \* 2. Measured at 3000rpm with no load



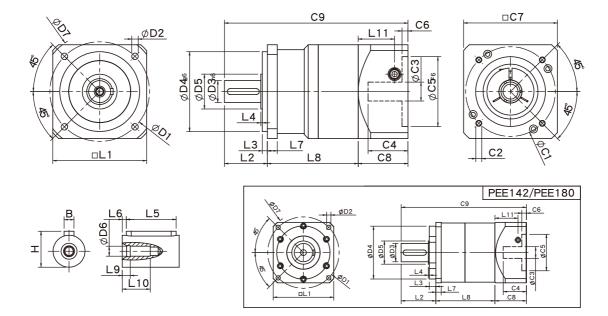




# PEE Single Stage Dimensions



## Specifications

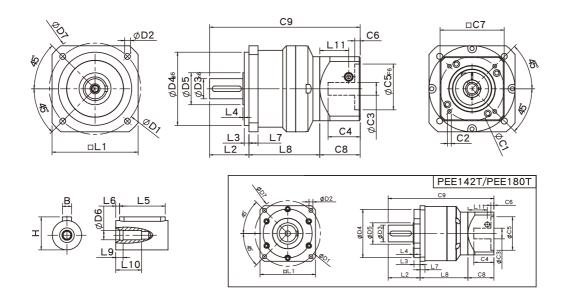

| Dimensions                    | PEE50   | PEE70   | PEE90    | PEE120                   | PEE142   | PEE180    |
|-------------------------------|---------|---------|----------|--------------------------|----------|-----------|
| D1                            | 50      | 70      | 100      | 130                      | 165      | 215       |
| D2                            | 3.4     | 6       | 6.5      | 8.5                      | 10.5     | 13        |
| D3 h6                         | 13      | 16      | 22       | 32                       | 40       | 55        |
| D4 g6                         | 35      | 50      | 80       | 110                      | 130      | 160       |
| D5                            | 15      | 25      | 35       | 45                       | 50       | 70        |
| D6                            | M4x0.7P | M5x0.8P | M8x1.25P | M12x1.75P                | M16x2.0P | M20x2.5P  |
| D7                            | 64      | 90      | 120      | 152                      | 186      | 239       |
| L1                            | 50      | 70      | 94       | 120                      | 142      | 182       |
| L2                            | 24.5    | 37      | 43       | 60                       | 93       | 104.5     |
| L3                            | 4       | 7       | 5        | 6                        | 8        | 20        |
| L4                            | 1.5     | 1.5     | 1.5      | 3                        | 6        | 2.5       |
| L5                            | 15      | 25      | 32       | 40                       | 60       | 70        |
| L6                            | 2       | 2       | 3        | 5                        | 5        | 6         |
| L7                            | 5       | 6       | 10       | 12                       | 18       | 16        |
| L8                            | 30      | 36      | 51       | 61                       | 79       | 87.5      |
| L9                            | 4       | 4       | 4.5      | 6                        | 6        | 8         |
| L10                           | 14      | 16.5    | 20.5     | 30                       | 38       | 48        |
| L11                           | 24.4    | 31.5    | 36.5     | 42                       | 63       | 69.5      |
| C1 <sup>2</sup>               | 46      | 70      | 90       | 115                      | 145      | 200       |
| C2 <sup>2</sup>               | M4x0.7P | M5x0.8P | M6x1.0P  | M8x1.25P                 | M8x1.25P | M12x1.75P |
| C3 <sup>2</sup>               | ≦8      | ≦14     | ≦19/≦24  | <u>≤</u> 24/ <u>≤</u> 28 | ≦35      | ≦50       |
| C4 <sup>2</sup>               | 27      | 35      | 43       | 58                       | 66       | 82        |
| C5 <sup>2</sup> <sub>F6</sub> | 30      | 50      | 70       | 95                       | 110      | 114.3     |
| C6 <sup>2</sup>               | 4       | 5       | 5        | 8                        | 6        | 13        |
| C7 <sup>2</sup>               | 50      | 70      | 94       | 120                      | 140      | 182       |
| C8 <sup>2</sup>               | 34      | 44      | 50       | 63                       | 80       | 95        |
| C9 <sup>2</sup>               | 88.5    | 117     | 144      | 184                      | 252      | 287       |
| В                             | 5       | 5       | 6        | 10                       | 12       | 16        |
| Н                             | 15      | 18      | 24.5     | 35                       | 43       | 59        |

 $<sup>\</sup>bigstar \ \text{C1} \sim \text{C9 are motor specific dimensions(metric std shown ), Size may vary according to the motor flange chosen.}$ 

 $<sup>\</sup>bigstar$  Specification subject to change without notice.

# Series

## PEE Double Stage Dimensions-1




### Specifications

| Dimensions                    | PEE50   | PEE70   | PEE90    | PEE120                   | PEE142      | PEE180      |
|-------------------------------|---------|---------|----------|--------------------------|-------------|-------------|
| D1                            | 50      | 70      | 100      | 130                      | 165         | 215         |
| D2                            | 3.4     | 6       | 6.5      | 8.5                      | 10.5        | 13          |
| D3 h6                         | 13      | 16      | 22       | 32                       | 40          | 55          |
| D4 g6                         | 35      | 50      | 80       | 110                      | 130         | 160         |
| D5                            | 15      | 25      | 35       | 45                       | 50          | 70          |
| D6                            | M4x0.7P | M5x0.8P | M8x1.25P | M12x1.75P                | M16x2.0P    | M20x2.5P    |
| D7                            | 64      | 90      | 120      | 152                      | 186         | 239         |
| L1                            | 50      | 70      | 94       | 120                      | 142         | 182         |
| L2                            | 24.5    | 37      | 43       | 60                       | 93          | 104.5       |
| L3                            | 4       | 7       | 5        | 6                        | 8           | 20          |
| L4                            | 1.5     | 1.5     | 1.5      | 3                        | 6           | 2.5         |
| L5                            | 15      | 25      | 32       | 40                       | 60          | 70          |
| L6                            | 2       | 2       | 3        | 5                        | 5           | 6           |
| L7                            | 5       | 6       | 10       | 12                       | 18          | 16          |
| L8                            | 56      | 64      | 91       | 109                      | 140         | 177.5       |
| L9                            | 4       | 4       | 4.5      | 6                        | 6           | 8           |
| L10                           | 14      | 16.5    | 20.5     | 30                       | 38          | 48          |
| L11                           | 24.4    | 31.5    | 36.5     | 42                       | 63          | 69.5        |
| C1 <sup>2</sup>               | 46      | 70      | 90       | 115                      | 145         | 200         |
| C2 <sup>2</sup>               | M4x0.7P | M5x0.8P | M6x1.0P  | M8x1.25P                 | M8x1.25P    | M12x1.75P   |
| C3 <sup>2</sup>               | ≦8      | ≦14     | ≦19/≦24  | <u>≤</u> 24/ <u>≤</u> 28 | <u>≤</u> 35 | <u>≤</u> 50 |
| C4 <sup>2</sup>               | 27      | 35      | 43       | 58                       | 66          | 82          |
| C5 <sup>2</sup> <sub>F6</sub> | 30      | 50      | 70       | 95                       | 110         | 114.3       |
| C6 <sup>2</sup>               | 4       | 5       | 5        | 8                        | 6           | 13          |
| C7 <sup>2</sup>               | 50      | 70      | 94       | 120                      | 140         | 182         |
| C8 <sup>2</sup>               | 34      | 44      | 50       | 63                       | 80          | 95          |
| C9 <sup>2</sup>               | 114.5   | 145     | 184      | 232                      | 313         | 377         |
| В                             | 5       | 5       | 6        | 10                       | 12          | 16          |
| Н                             | 15      | 18      | 24.5     | 35                       | 43          | 59          |

- ★ C1~C9 are motor specific dimensions(metric std shown ),Size may vary according to the motor flange chosen.
- $\star$  Specification subject to change without notice.

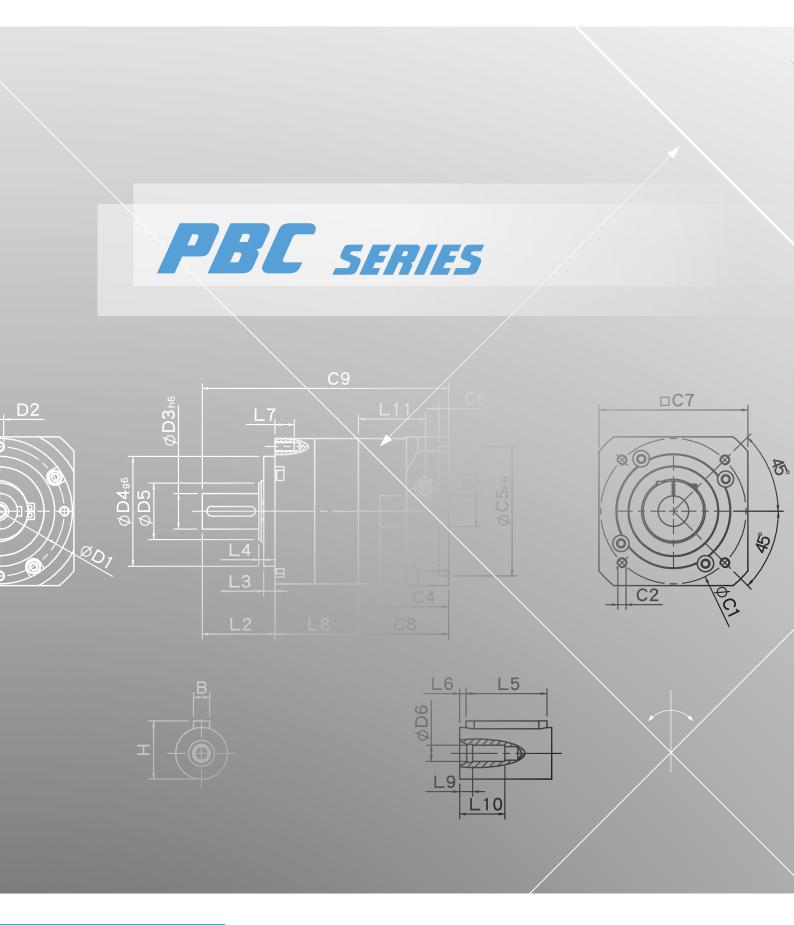
## PEE Double Stage Dimensions-2



## Specifications

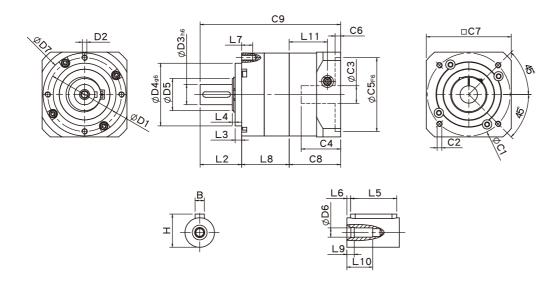
| Dimensions         | PEE70T     | PEE90T   | PEE120T   | PEE142T                  | PEE180T  |
|--------------------|------------|----------|-----------|--------------------------|----------|
| D1                 | 70         | 100      | 130       | 165                      | 215      |
| D2                 | 6          | 6.5      | 8.5       | 10.5                     | 13       |
| D3 h6              | 16         | 22       | 32        | 40                       | 55       |
| D4 g6              | 50         | 80       | 110       | 130                      | 160      |
| D5                 | 25         | 35       | 45        | 50                       | 70       |
| D6                 | M5x0.8P    | M8x1.25P | M12x1.75P | M16x2.0P                 | M20x2.5P |
| D7                 | 90         | 120      | 152       | 186                      | 239      |
| L1                 | 70         | 94       | 120       | 142                      | 182      |
| L2                 | 37         | 43       | 60        | 93                       | 104.5    |
| L3                 | 7          | 5        | 6         | 8                        | 20       |
| L4                 | 1.5        | 1.5      | 3         | 6                        | 2.5      |
| L5                 | 25         | 32       | 40        | 60                       | 70       |
| L6                 | 2          | 3        | 5         | 5                        | 6        |
| L7                 | 6          | 10       | 12        | 18                       | 16       |
| L8                 | 58.8       | 77.5     | 99.4      | 127                      | 157      |
| L9                 | 4          | 4.5      | 6         | 6                        | 8        |
| L10                | 16.5       | 20.5     | 30        | 38                       | 48       |
| L11                | 29         | 35.5     | 40.5      | 42                       | 63       |
| C1 <sup>2</sup>    | 46         | 70       | 90        | 115                      | 145      |
| C2 <sup>2</sup>    | M4x0.7P    | M5x0.8P  | M6x1.0P   | M8x1.25P                 | M8x1.25P |
| C3 <sup>2</sup>    | <u>≤</u> 8 | ≦14      | ≦19/≦24   | <u>≤</u> 24/ <u>≤</u> 28 | ≦35      |
| C4 <sup>2</sup>    | 28.5       | 41       | 47.75     | 58                       | 66       |
| C5 <sup>2</sup> F6 | 30         | 50       | 70        | 95                       | 110      |
| C6 <sup>2</sup>    | 5.5        | 8        | 6         | 8                        | 6        |
| C7 <sup>2</sup>    | 50         | 70       | 94        | 120                      | 140      |
| C8 <sup>2</sup>    | 40         | 50       | 55        | 63                       | 80       |
| C9 <sup>2</sup>    | 135.8      | 170.5    | 214.4     | 283                      | 341.5    |
| В                  | 5          | 6        | 10        | 12                       | 16       |
| Н                  | 18         | 24.5     | 35        | 43                       | 59       |

<sup>★</sup> C1~C9 are motor specific dimensions(metric std shown ),Size may vary according to the motor flange chosen.


 $<sup>\</sup>bigstar$  Specification subject to change without notice.

### PEE Specifications Table

| Specifica                | tions          |     | Stage  | Ratio           | PEE-50    | -50 PEE-70 PEE-90 PEE-120 PEE-142 PE |                               |                                 |              | PEE-180      |
|--------------------------|----------------|-----|--------|-----------------|-----------|--------------------------------------|-------------------------------|---------------------------------|--------------|--------------|
|                          |                |     |        | 3               | 13.8      | 44.2                                 | 95.2                          | 283                             | 482          | 1151         |
|                          |                |     |        | 4               | 11.9      | 35.9                                 | 74.6                          | 249                             | 490          | 1055         |
|                          |                |     | 1      | 5               | 13.8      | 43.0                                 | 95.2                          | 283                             | 473          | 1151         |
|                          |                |     |        | 7               | 11.9      | 36.0                                 | 85.6                          | 219                             | 400          | 1055         |
|                          |                |     |        | 10              | 10.1      | 25.0                                 | 75.0                          | 210                             | 320          | 763          |
|                          |                |     | Stage  | Ratio           | PEE-50    | PEE-70(T)                            | PEE-90(T)                     | PEE-120(T)                      | PEE-142(T)   | PEE-180(T)   |
| Nominal Output Tor       | gue N•         | _   |        | 15              | 13.8      | 44.2                                 | 95.2                          | 283                             | 482          | 1151         |
| Nominal Output Tol       | que   N        | ''' |        | 20              | 11.9      | 35.9                                 | 74.6                          | 249                             | 490          | 1055         |
|                          |                |     |        | 25              | 13.8      | 43.0                                 | 95.2                          | 283                             | 473          | 1151         |
|                          |                |     |        | 30              | 13.8      | 43.0                                 | 95.2                          | 283                             | 473          | 1151         |
|                          |                |     | 2      | 35              | 13.8      | 43.0                                 | 95.2                          | 283                             | 473          | 1151         |
|                          |                |     | 2      | 40              | 13.8      | 43.0                                 | 95.2                          | 283                             | 473          | 1151         |
|                          |                |     |        | 50              | 13.8      | 43.0                                 | 95.2                          | 283                             | 473          | 1151         |
|                          |                |     |        | 70              | 11.9      | 36.0                                 | 85.6                          | 219                             | 400          | 1055         |
|                          |                |     |        | 100             | 10.1      | 25.0                                 | 75.0                          | 210                             | 320          | 763          |
| Emergency Stop Tor       | que N•         | m   |        |                 |           | 3.0 time                             | es of Nominal<br>que T2B =60% | Output Torque<br>of Emergency S |              |              |
| Nominal Input Spe        | ed rpn         | n   | 1,2    | 3-100           | 3000      | 3000                                 | 3000                          | 2500                            | 2000         | 2000         |
| Max. Input Speed         | rpn            | n   | 1,2    | 3-100           | 6000      | 6000                                 | 6000                          | 5000                            | 4000         | 4000         |
| Da alda ala              |                |     | 1      | 3-10            | ≦12       | ≦ 9                                  | ≦ 9                           | ≦7                              | ≦7           | ≦ 7          |
| Backlash                 | arcm           | nin | 2      | 12-100          | ≦ 15      | ≦ 12                                 | ≦12                           | ≦ 9                             | ≦ 9          | ≦9           |
| Torsional Rigidity       | , N•ı<br>/arcn |     | 1,2    | 3-100           | 1.0       | 2.8                                  | 7.5                           | 15.5                            | 30           | 57           |
| Max. Radial Load         | N              |     | 1,2    | 3-100           | 350       | 960                                  | 1630                          | 3380                            | 6150         | 7260         |
| Max. Axial Load          | N              |     | 1,2    | 3-100           | 320       | 900                                  | 1420                          | 2930                            | 5510         | 5550         |
| Operating Temp           | °C             |     |        | 3-100           |           |                                      | -10 °C                        | ~+90 °C                         |              |              |
| Service Life             | hr             |     |        | 3-100           |           | 20,0                                 | 00 (10,000/ Co                | ntinuous opera                  | ition)       |              |
| Efficiency               | %              |     | 1<br>2 | 3-10<br>12-100  |           |                                      |                               | 95%<br>90%                      |              |              |
| Weight                   | kg             |     | 1      | 3-10            | 0.7       | 1.4                                  | 3.0                           | 7.3                             | 15.6         | 26           |
|                          |                |     | 2      | 12-100          | 0.9       | 2.2/1.7                              | 5.0/3.4                       | 11.5/8.5                        | 20.7/17.2    | 36/31        |
| Mounting Positio         |                |     | 1,2    | 3-100           |           | v                                    | -                             | irection                        |              |              |
| Noise Level <sup>2</sup> | dBA/           | lm  | 1,2    | 3-100           | ≦ 65      | ≦ 67                                 | ≦ 70                          | ≦ 70                            | ≦ 75         | ≦ 75         |
| Protection Class         | -              |     | 1,2    | 3-100           |           |                                      |                               | P65                             |              |              |
| Lubrication              | -              |     | 1,2    | 3-100           |           |                                      | Urea de                       | erivatives                      |              |              |
|                          |                |     |        |                 | Inertia(. | -                                    |                               |                                 |              |              |
| Stage                    | Ratio          |     | ur     | nit             | PEE-50    | PEE-70                               | PEE-90                        | PEE-120                         | PEE-142      | PEE-180      |
|                          | 3              |     |        |                 | 0.03      | 0.20                                 | 0.81                          | 2.20                            | 7.89         | 25.2         |
| , <u> </u>               | 4              |     |        |                 | 0.03      | 0.16                                 | 0.65                          | 1.80                            | 5.83         | 19.8         |
| 1                        | 5<br>7         |     |        |                 | 0.03      | 0.15                                 | 0.62                          | 1.61<br>1.55                    | 5.38<br>5.22 | 18.3<br>17.8 |
|                          | 10             |     | Kg •   | cm <sup>2</sup> | 0.03      | 0.14                                 | 0.60                          | 1.53                            | 5.20         | 17.6         |
| Stage                    | Ratio          |     | Ng •   | Citi            | PEE-50    | PEE-70(T)                            | PEE-90(T)                     | PEE-120(T)                      | PEE-142(T)   | PEE-180(T    |
|                          | 15/20/25       |     |        |                 | 0.02      | 0.15(0.02)                           | 0.62(0.15)                    | 1.61(0.62)                      | 5.38(1.61)   | 18.3(5.38)   |
| 2                        | 30/35/40       |     |        |                 | 0.02      | 0.14(0.02)                           | 0.60(0.14)                    | 1.55(0.60)                      | 5.22(1.55)   | 17.8(5.22)   |
|                          | 50/70/100      |     |        |                 | 0.02      | 0.14(0.02)                           | 0.60(0.14)                    | 1.53(0.60)                      | 5.20(1.53)   | 17.6(5.20)   |


<sup>\* 1.</sup> Applied to the output shaft center @100rpm. \* 2. Measured at 3000rpm with no load

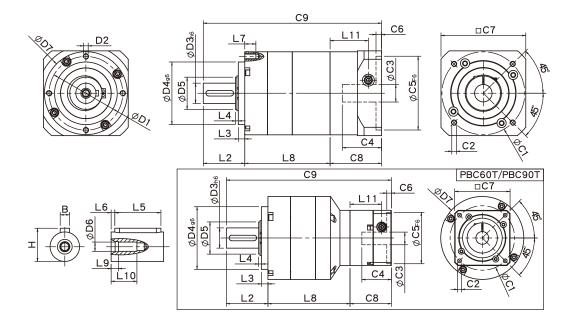






# PBC Single Stage Dimensions




## Specifications

| Dimensions         | PBC50   | PBC70   | PBC90       |
|--------------------|---------|---------|-------------|
| D1                 | 44      | 62      | 80          |
| D2                 | M4x0.7P | M5x0.8P | M6x1.0P     |
| D3 h6              | 12      | 16      | 22          |
| D4 g6              | 35      | 52      | 68          |
| D5                 | 15      | 20      | 35          |
| D6                 | M4x0.7P | M5x0.8P | M8x1.25P    |
| D7                 | 50      | 70      | 90          |
| L2                 | 26      | 36      | 45          |
| L3                 | 5.5     | 5       | 7           |
| L4                 | 2.6     | 2.7     | 3           |
| L5                 | 15      | 25      | 30          |
| L6                 | 2       | 2       | 3           |
| L7                 | 8       | 10      | 12          |
| L8                 | 32.4    | 49.6    | 54.4        |
| L9                 | 4       | 4       | 4.5         |
| L10                | 14      | 16.5    | 20.5        |
| L11                | 26.9    | 34.3    | 41.55       |
| C1 <sup>2</sup>    | 46      | 70      | 90          |
| C2 <sup>2</sup>    | M4x0.7P | M5x0.8P | M6x1.0P     |
| C3 <sup>2</sup>    | ≦8/≦11  | ≦14/≦19 | ≦19/≦24/≦28 |
| C4 <sup>2</sup>    | 26.5    | 33.5    | 41          |
| C5 <sup>2</sup> F6 | 30      | 50      | 70          |
| C6 <sup>2</sup>    | 4       | 4       | 6           |
| C7 <sup>2</sup>    | 42.6    | 60      | 92          |
| C8 <sup>2</sup>    | 36.4    | 44.8    | 55.8        |
| C9 <sup>2</sup>    | 94.8    | 130.4   | 155.2       |
| В                  | 5       | 5       | 6           |
| Н                  | 15      | 18      | 24.5        |

<sup>★</sup> C1~C9 are motor specific dimensions(metric std shown ),Size may vary according to the motor flange chosen.

 $<sup>\</sup>star$  Specification subject to change without notice.

### PBC Double Stage Dimensions



### Specifications

| Dimensions         | PBC50   | PBC70   | PBC70T  | PBC90       | PBC90T  |
|--------------------|---------|---------|---------|-------------|---------|
| D1                 | 44      | 6       | 52      | 8           | 0       |
| D2                 | M4x0.7P | M5>     | (0.8P   | M6x1.0P     |         |
| D3 h6              | 13      | 1       | .6      | 22          |         |
| D4 g6              | 35      | 5       | 52      | 68          |         |
| D5                 | 15      | 2       | 20      | 3           | 5       |
| D6                 | M4x0.7P | M5>     | 0.8P    | M8x         | 1.25P   |
| D7                 | 50      | 7       | 0       | 9           | 0       |
| L2                 | 26      | 3       | 6       | 4           | .5      |
| L3                 | 5.5     |         | 5       | -           | 7       |
| L4                 | 2.6     | 2       | .7      |             | 3       |
| L5                 | 15      | 2       | 25      | 30          |         |
| L6                 | 2       |         | 2       | 3           |         |
| L7                 | 8       | 1       | .0      | 12          |         |
| L8                 | 57.3    | 80.3    | 75.9    | 95.4        | 92      |
| L9                 | 4       |         | 4       | 4.5         |         |
| L10                | 14      | 16      | 5.5     | 20.5        |         |
| L11                | 26.9    | 34.3    | 26.9    | 41.55       | 34.3    |
| C1 <sup>2</sup>    | 46      | 70      | 46      | 90          | 70      |
| C2 <sup>2</sup>    | M4x0.7P | M5x0.8P | M4x0.7P | M6x1.0P     | M5x0.8P |
| C3 <sup>2</sup>    | ≦8/≦11  | ≦14/≦19 | ≦8/≦11  | ≦19/≦24/≦28 | ≦14/≦19 |
| C4 <sup>2</sup>    | 26.5    | 33.5    | 26.5    | 41          | 33.5    |
| C5 <sup>2</sup> F6 | 30      | 50      | 30      | 70          | 50      |
| C6 <sup>2</sup>    | 4       | 4       | 4       | 6           | 4       |
| C7 <sup>2</sup>    | 42.6    | 60      | 42.6    | 92          | 60      |
| C8 <sup>2</sup>    | 36.4    | 44.8    | 36.4    | 55.8        | 44.8    |
| C9 <sup>2</sup>    | 119.7   | 161.1   | 148.3   | 196.2       | 181.8   |
| В                  | 5       |         | 5       |             | 5       |
| Н                  | 15      | 1       | .8      | 24          | 1.5     |

<sup>★</sup> C1~C9 are motor specific dimensions(metric std shown ),Size may vary according to the motor flange chosen.

 $<sup>\</sup>star$  Specification subject to change without notice.

# PBC Specifications Table

| Specifications                                                                                                                                       |                                               | Stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ratio                                                                                                                               | PBC-50                                             | PBC-70                                                                                                                                                          | PBC-90                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|                                                                                                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                   | 4.8                                                | 13.6                                                                                                                                                            | 33.5                                               |
|                                                                                                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                   | 6.3                                                | 21.6                                                                                                                                                            | 58.6                                               |
|                                                                                                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                   | 6.0                                                | 20.5                                                                                                                                                            | 55.1                                               |
|                                                                                                                                                      |                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                   | 5.6                                                | 19.2                                                                                                                                                            | 51.8                                               |
|                                                                                                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                                                                                                                   | 5.4                                                | 18.5                                                                                                                                                            | 50.0                                               |
|                                                                                                                                                      |                                               | Stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ratio                                                                                                                               | PBC-50                                             | PBC-70(T)                                                                                                                                                       | PBC-90(T)                                          |
|                                                                                                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15                                                                                                                                  | 4.8                                                | 13.6                                                                                                                                                            | 33.5                                               |
|                                                                                                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                  | 6.3                                                | 21.6                                                                                                                                                            | 58.6                                               |
|                                                                                                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                  | 6.0                                                | 20.5                                                                                                                                                            | 55.1                                               |
|                                                                                                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35                                                                                                                                  | 6.0                                                | 20.5                                                                                                                                                            | 55.1                                               |
|                                                                                                                                                      |                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45                                                                                                                                  | 6.0                                                | 20.5                                                                                                                                                            | 55.1                                               |
| Nominal Output Torque                                                                                                                                | N•m                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 49                                                                                                                                  | 5.6                                                | 19.2                                                                                                                                                            | 51.8                                               |
|                                                                                                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 63                                                                                                                                  | 5.6                                                | 19.2                                                                                                                                                            | 51.8                                               |
|                                                                                                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 81                                                                                                                                  | 5.4                                                | 18.5                                                                                                                                                            | 50.0                                               |
|                                                                                                                                                      |                                               | Stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ratio                                                                                                                               | PBC-50                                             | PBC-70T                                                                                                                                                         | PBC-90T                                            |
|                                                                                                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 125                                                                                                                                 | 6.0                                                | 20.5                                                                                                                                                            | 55.1                                               |
|                                                                                                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 175                                                                                                                                 | 6.0                                                | 20.5                                                                                                                                                            | 55.1                                               |
|                                                                                                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 225                                                                                                                                 | 6.0                                                | 20.5                                                                                                                                                            | 55.1                                               |
|                                                                                                                                                      |                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 245                                                                                                                                 | 6.0                                                | 20.5                                                                                                                                                            | 55.1                                               |
|                                                                                                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 315                                                                                                                                 | 6.0                                                | 20.5                                                                                                                                                            | 55.1                                               |
|                                                                                                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 405                                                                                                                                 | 6.0                                                | 20.5                                                                                                                                                            | 55.1                                               |
|                                                                                                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 567                                                                                                                                 | 5.6                                                | 19.2                                                                                                                                                            | 51.8                                               |
|                                                                                                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 729                                                                                                                                 | 5.4                                                | 18.5                                                                                                                                                            | 50.0                                               |
| Emergency Stop Torque                                                                                                                                | N • m                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (* M                                                                                                                                | 3.0 times of No                                    | ominal Output Torque<br>=60% of Emergency St                                                                                                                    |                                                    |
| Nominal Input Speed                                                                                                                                  | rpm                                           | 1,2,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3-729                                                                                                                               | 4000                                               | 4000                                                                                                                                                            | 3000                                               |
| Max. Input Speed                                                                                                                                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                     |                                                    |                                                                                                                                                                 |                                                    |
|                                                                                                                                                      | rpm                                           | 1,2,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3-729                                                                                                                               | 8000                                               | 6000                                                                                                                                                            | 6000                                               |
|                                                                                                                                                      | rpm                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                     |                                                    |                                                                                                                                                                 |                                                    |
| Racklach                                                                                                                                             |                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3-9                                                                                                                                 | ≦ 9                                                | ≦8                                                                                                                                                              | <b>≦</b> 7                                         |
| Backlash                                                                                                                                             | rpm<br>arcmin                                 | 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                     |                                                    | ≦ 8<br>≦ 10                                                                                                                                                     | ≦ 7<br>≦ 9                                         |
| Backlash<br>Torsional Rigidity                                                                                                                       |                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3-9<br>15-81                                                                                                                        | ≦ 9<br>≦ 12                                        | ≦8                                                                                                                                                              | <b>≦</b> 7                                         |
|                                                                                                                                                      | arcmin N • m                                  | 1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3-9<br>15-81<br>125-729                                                                                                             | ≤ 9<br>≤ 12<br>≤ 15                                | ≦ 8<br>≦ 10<br>≤ 12                                                                                                                                             | ≤ 7<br>≤ 9<br>≤ 12                                 |
| Torsional Rigidity                                                                                                                                   | arcmin  N • m /arcmin                         | 1<br>2<br>3<br>1,2,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-9<br>15-81<br>125-729<br>3-729                                                                                                    | ≤ 9<br>≤ 12<br>≤ 15<br>0.8                         | ≦ 8<br>≤ 10<br>≤ 12<br>2.0                                                                                                                                      | ≦7<br>≤9<br>≤12<br>7.0                             |
| Torsional Rigidity  Max. Radial Load                                                                                                                 | arcmin  N • m /arcmin                         | 1 2 3 1,2,3 1,2,3 1,2,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3-9<br>15-81<br>125-729<br>3-729<br>3-729                                                                                           | ≤ 9<br>≤ 12<br>≤ 15<br>0.8                         | ≦ 8<br>≤ 10<br>≤ 12<br>2.0                                                                                                                                      | ≦ 7<br>≤ 9<br>≤ 12<br>7.0                          |
| Torsional Rigidity  Max. Radial Load  Max. Axial Load                                                                                                | arcmin  N • m /arcmin  N                      | 1 2 3 1,2,3 1,2,3 1,2,3 1,2,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3-9<br>15-81<br>125-729<br>3-729<br>3-729<br>3-729<br>3-729                                                                         | ≦9<br>≤12<br>≤15<br>0.8<br>540                     | ≦ 8<br>≤ 10<br>≤ 12<br>2.0<br>1040<br>720                                                                                                                       | ≦7<br>≦9<br>≦12<br>7.0<br>1700                     |
| Torsional Rigidity  Max. Radial Load  Max. Axial Load  Operating Temp.                                                                               | arcmin  N • m /arcmin  N  N                   | 1 2 3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3-9<br>15-81<br>125-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-729                                                                | ≦9<br>≤12<br>≤15<br>0.8<br>540                     | ≦ 8<br>≤ 10<br>≤ 12<br>2.0<br>1040<br>720<br>-10 °C ~+90 °C<br>(10,000/ Continuous op                                                                           | ≦7<br>≦9<br>≦12<br>7.0<br>1700                     |
| Torsional Rigidity  Max. Radial Load  Max. Axial Load  Operating Temp.                                                                               | arcmin  N • m /arcmin  N  N                   | 1 2 3 1,2,3 1,2,3 1,2,3 1,2,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3-9<br>15-81<br>125-729<br>3-729<br>3-729<br>3-729<br>3-729                                                                         | ≦9<br>≤12<br>≤15<br>0.8<br>540                     | ≦8<br>≤10<br>≤12<br>2.0<br>1040<br>720<br>-10 °C ~+90 °C                                                                                                        | ≦7<br>≦9<br>≦12<br>7.0<br>1700                     |
| Torsional Rigidity  Max. Radial Load  Max. Axial Load  Operating Temp.  Service Life                                                                 | arcmin  N • m /arcmin  N  N  N  hr            | 1 2 3 1,2,3 1,2,3 1,2,3 1,2,3 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3-9<br>15-81<br>125-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-9                                                         | ≦9<br>≤12<br>≤15<br>0.8<br>540                     | ≦ 8<br>≤ 10<br>≤ 12<br>2.0<br>1040<br>720<br>-10 °C ~+90 °C<br>(10,000/ Continuous op                                                                           | ≦7<br>≦9<br>≦12<br>7.0<br>1700                     |
| Torsional Rigidity  Max. Radial Load  Max. Axial Load  Operating Temp.  Service Life  Efficiency                                                     | arcmin  N • m /arcmin  N  N  N  *C  hr        | 1 2 3 1,2,3 1,2,3 1,2,3 1,2,3 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3-9<br>15-81<br>125-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-9<br>15-81<br>125-729<br>3-9                              | ≦ 9<br>≤ 12<br>≤ 15<br>0.8<br>540                  | ≦ 8<br>≤ 10<br>≤ 12<br>2.0<br>1040<br>720<br>-10 °C ~+90 °C<br>(10,000/ Continuous op<br>≥ 95%<br>≥ 90%                                                         | ≦ 7<br>≤ 9<br>≤ 12<br>7.0<br>1700<br>735           |
| Torsional Rigidity  Max. Radial Load  Max. Axial Load  Operating Temp.  Service Life                                                                 | arcmin  N • m /arcmin  N  N  N  hr            | 1 2 3 1,2,3 1,2,3 1,2,3 1 2 3 1 2 3 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3-9<br>15-81<br>125-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-9<br>15-81<br>125-729<br>3-9<br>15-81                     | ≤ 9<br>≤ 12<br>≤ 15<br>0.8<br>540<br>360<br>20,000 | ≦ 8<br>≤ 10<br>≤ 12<br>2.0<br>1040<br>720<br>-10 °C ~+90 °C<br>(10,000/ Continuous op<br>≥ 95%<br>≥ 90%<br>≥ 85%<br>1.2<br>1.7/1.5                              | ≦7<br>≦9<br>≦12<br>7.0<br>1700<br>735<br>Deration) |
| Torsional Rigidity  Max. Radial Load  Max. Axial Load  Operating Temp.  Service Life  Efficiency  Weight                                             | arcmin  N • m /arcmin  N  N  N  °C  hr  %     | 1 2 3 1,2,3 1,2,3 1,2,3 1 2 3 1 2 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3-9<br>15-81<br>125-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-9<br>15-81<br>125-729<br>3-9<br>15-81                     | ≤ 9<br>≤ 12<br>≤ 15<br>0.8<br>540<br>360           | ≤ 8 $ ≤ 10 $ $ ≤ 12 $ $ 2.0 $ $ 1040 $ $ 720 $ $ -10 °C ~+90 °C $ $ (10,000/ Continuous op)  ≥ 95%   ≥ 90%   ≥ 85%   1.2   1.7/1.5   2.0/1.8 $                  | ≦ 7<br>≤ 9<br>≤ 12<br>7.0<br>1700<br>735           |
| Torsional Rigidity  Max. Radial Load  Max. Axial Load  Operating Temp. Service Life  Efficiency  Weight  Mounting Position                           | arcmin  N • m /arcmin  N  N  N  °C  hr  %  kg | 1 2 3 1,2,3 1,2,3 1,2,3 1 2 3 1 2 3 1,2,3 1,2,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3-9<br>15-81<br>125-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-9<br>15-81<br>125-729<br>3-9<br>15-81<br>125-729<br>3-729 | ≤ 9<br>≤ 12<br>≤ 15<br>0.8<br>540<br>360<br>20,000 | ≤ 8 $ ≤ 10 $ $ ≤ 12 $ $ 2.0 $ $ 1040 $ $ 720 $ $ -10 °C ~+90 °C $ $ (10,000/ Continuous op ≤ 95%  ≤ 90%   ≤ 85%   1.2   1.7/1.5   2.0/1.8  Any direction$       | ≦7<br>≤9<br>≤12<br>7.0<br>1700<br>735<br>Deration) |
| Torsional Rigidity  Max. Radial Load  Max. Axial Load  Operating Temp. Service Life  Efficiency  Weight  Mounting Position  Noise Level <sup>2</sup> | arcmin  N • m /arcmin  N  N  C hr  kg  dBA/1m | 1 2 3 1,2,3 1,2,3 1,2,3 1 2 3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 | 3-9<br>15-81<br>125-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-9<br>15-81<br>125-729<br>3-9<br>15-81<br>125-729<br>3-729 | ≤ 9<br>≤ 12<br>≤ 15<br>0.8<br>540<br>360<br>20,000 | ≤ 8 $ ≤ 10 $ $ ≤ 12 $ $ 2.0 $ $ 1040 $ $ 720 $ $ -10 °C ~+90 °C $ $ (10,000/ Continuous op ≤ 95%  ≤ 90%   ≤ 85%   1.2   1.7/1.5   2.0/1.8  Any direction  ≤ 64$ | ≦7<br>≦9<br>≦12<br>7.0<br>1700<br>735<br>Deration) |
| Torsional Rigidity  Max. Radial Load  Max. Axial Load  Operating Temp.  Service Life  Efficiency  Weight  Mounting Position                          | arcmin  N • m /arcmin  N  N  N  °C  hr  %  kg | 1 2 3 1,2,3 1,2,3 1,2,3 1 2 3 1 2 3 1,2,3 1,2,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3-9<br>15-81<br>125-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-9<br>15-81<br>125-729<br>3-9<br>15-81<br>125-729<br>3-729 | ≤ 9<br>≤ 12<br>≤ 15<br>0.8<br>540<br>360<br>20,000 | ≤ 8 $ ≤ 10 $ $ ≤ 12 $ $ 2.0 $ $ 1040 $ $ 720 $ $ -10 °C ~+90 °C $ $ (10,000/ Continuous op ≤ 95%  ≤ 90%   ≤ 85%   1.2   1.7/1.5   2.0/1.8  Any direction$       | ≦7<br>≤9<br>≤12<br>7.0<br>1700<br>735<br>Deration) |

<sup>\* 1.</sup> Applied to the output shaft center @100rpm.
\* 2. Measured at 3000rpm with no load
% The above figures/specifications are subject to change without prior notice.

# **PLANETARY GEARHEADS**

eries —

PHFR Series

es F Ser

PUR

PUL

PGLH P

s PGC Series

PGE

PGRH

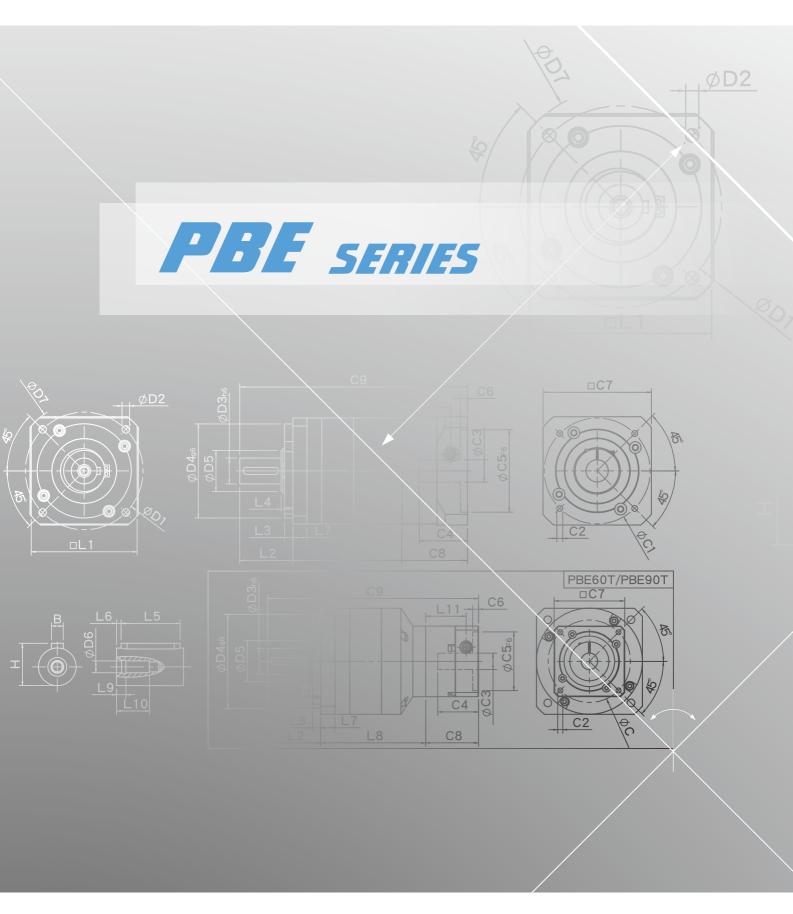
PGR Series

PGFR

. - 즉

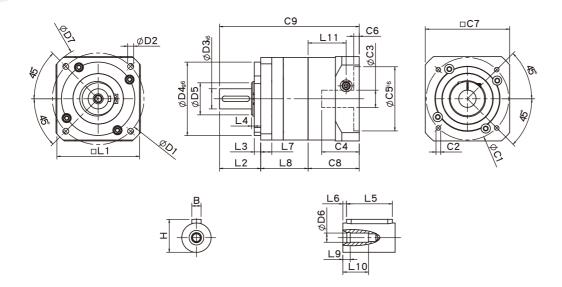
PEC

PEE


PBC

PBE Series

PAE Series





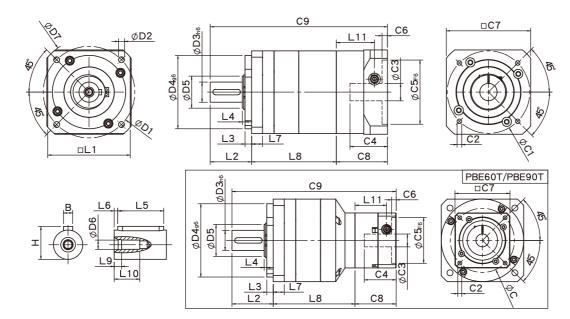





## PBE Single Stage Dimensions



## Specifications


| Dimensions         | PBE42   | PBE60                    | PBE90                                 |
|--------------------|---------|--------------------------|---------------------------------------|
| D1                 | 50      | 70                       | 100                                   |
| D2                 | 3.4     | 5.5                      | 6.5                                   |
| D3 h6              | 13      | 16                       | 22                                    |
| D4 g6              | 35      | 50                       | 80                                    |
| D5                 | 15      | 20                       | 35                                    |
| D6                 | M4x0.7P | M5x0.8P                  | M8x1.25P                              |
| D7                 | 56      | 80                       | 118                                   |
| L1                 | 42.6    | 60                       | 90                                    |
| L2                 | 26      | 36                       | 45                                    |
| L3                 | 5.5     | 5                        | 7                                     |
| L4                 | 2.6     | 2.7                      | 3                                     |
| L5                 | 15      | 25                       | 30                                    |
| L6                 | 2       | 2                        | 3                                     |
| L7                 | 8       | 10                       | 12                                    |
| L8                 | 32.4    | 49.6                     | 54.4                                  |
| L9                 | 4       | 4                        | 4.5                                   |
| L10                | 14      | 16.5                     | 20.5                                  |
| L11                | 26.9    | 34.3                     | 41.5                                  |
| C1 <sup>2</sup>    | 46      | 70                       | 90                                    |
| C2 <sup>2</sup>    | M4x0.7P | M5x0.8P                  | M6x1.0P                               |
| C3 <sup>2</sup>    | ≦8/≦11  | <u>≤</u> 14/ <u>≤</u> 19 | <u>≤</u> 19/ <u>≤</u> 24/ <u>≤</u> 28 |
| C4 <sup>2</sup>    | 26.5    | 33.5                     | 41                                    |
| C5 <sup>2</sup> F6 | 30      | 50                       | 70                                    |
| C6 <sup>2</sup>    | 4       | 4                        | 6                                     |
| C7 <sup>2</sup>    | 42.6    | 60                       | 92                                    |
| C8 <sup>2</sup>    | 36.4    | 44.8                     | 55.8                                  |
| C9 <sup>2</sup>    | 94.8    | 130.4                    | 155.2                                 |
| В                  | 5       | 5                        | 6                                     |
| Н                  | 15      | 18                       | 24.5                                  |

 $<sup>\</sup>bigstar \ \text{C1} \sim \text{C9 are motor specific dimensions (metric std shown ), Size may vary according to the motor flange chosen.}$ 

 $<sup>\</sup>star$  Specification subject to change without notice.

### PAE Series

### PBE Double Stage Dimensions



### Specifications

| Dimensions         | PBE42   | PBE60,                   | /PBE60T | PBE90/F     | PBE90/PBE 90T            |  |
|--------------------|---------|--------------------------|---------|-------------|--------------------------|--|
| D1                 | 50      | -                        | 70      | 10          | 0                        |  |
| D2                 | 3.4     | 5.5                      |         | 6.          | 5                        |  |
| D3 h6              | 13      | 16                       |         | 22          |                          |  |
| D4 g6              | 35      | 50                       |         | 80          | 0                        |  |
| D5                 | 15      | 2                        | 20      | 3!          | 5                        |  |
| D6                 | M4x0.7P | M5:                      | x0.8P   | M8x1        | 25P                      |  |
| D7                 | 56      | 3                        | 30      | 11          | .8                       |  |
| L1                 | 42.6    | (                        | 50      | 90          | )                        |  |
| L2                 | 26      | 3                        | 36      | 4!          | 5                        |  |
| L3                 | 5.5     |                          | 5       | 7           | •                        |  |
| L4                 | 2.6     | 2                        | 2.7     | 3           | l                        |  |
| L5                 | 15      | 2                        | 25      | 30          |                          |  |
| L6                 | 2       |                          | 2       | 3           |                          |  |
| L7                 | 8       |                          | 10      | 12          |                          |  |
| L8                 | 57.3    | 80.3                     | 75.9    | 95.4        | 92                       |  |
| L9                 | 4       |                          | 4       | 4.5         |                          |  |
| L10                | 14      | 1                        | 6.5     | 20.5        |                          |  |
| L11                | 26.9    | 34.3                     | 26.9    | 41.55       | 34.3                     |  |
| C1 <sup>2</sup>    | 46      | 70                       | 46      | 90          | 70                       |  |
| C2 <sup>2</sup>    | M4x0.7P | M5x0.8P                  | M4x0.7P | M6x1.0P     | M5x0.8P                  |  |
| C3 <sup>2</sup>    | ≦8/≦11  | <u>≤</u> 14/ <u>≤</u> 19 | ≦8/≦11  | ≦19/≦24/≦28 | <u>≤</u> 14/ <u>≤</u> 19 |  |
| C4 <sup>2</sup>    | 26.5    | 33.5                     | 26.5    | 41          | 33.5                     |  |
| C5 <sup>2</sup> F6 | 30      | 50                       | 30      | 70          | 50                       |  |
| C6 <sup>2</sup>    | 4       | 4                        | 4       | 6           | 4                        |  |
| C7 <sup>2</sup>    | 42.6    | 60                       | 42.6    | 92          | 60                       |  |
| C8 <sup>2</sup>    | 36.4    | 44.8                     | 36.4    | 55.8        | 44.8                     |  |
| C9 <sup>2</sup>    | 119.7   | 161.1                    | 148.3   | 196.2       | 181.8                    |  |
| В                  | 5       |                          | 5       | 6           |                          |  |
| Н                  | 15      |                          | 18      | 24.5        |                          |  |

- $\star$  C1~C9 are motor specific dimensions(metric std shown ), Size may vary according to the motor flange chosen.
- $\star$  Specification subject to change without notice.

# PBE Specifications Table

| Specifications                                                                                                                                      |                                        | Stage                                                                       | Ratio                                                                                                                               | PBE-42                                               | PBE-60                                                                                                                                                              | PBE-90                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
|                                                                                                                                                     |                                        |                                                                             | 3                                                                                                                                   | 4.8                                                  | 13.6                                                                                                                                                                | 33.5                                             |
|                                                                                                                                                     |                                        |                                                                             | 4                                                                                                                                   | 6.3                                                  | 21.6                                                                                                                                                                | 58.6                                             |
|                                                                                                                                                     |                                        |                                                                             | 5                                                                                                                                   | 6.0                                                  | 20.5                                                                                                                                                                | 55.1                                             |
|                                                                                                                                                     |                                        | 1                                                                           | 7                                                                                                                                   | 5.6                                                  | 19.2                                                                                                                                                                | 51.8                                             |
|                                                                                                                                                     |                                        |                                                                             | 9                                                                                                                                   | 5.4                                                  | 18.5                                                                                                                                                                | 50.0                                             |
|                                                                                                                                                     |                                        |                                                                             |                                                                                                                                     |                                                      |                                                                                                                                                                     |                                                  |
|                                                                                                                                                     |                                        | Stage                                                                       | Ratio                                                                                                                               | PBE-42                                               | PBE-60(T)                                                                                                                                                           | PBE-90(T)                                        |
|                                                                                                                                                     |                                        |                                                                             | 15                                                                                                                                  | 4.8                                                  | 13.6                                                                                                                                                                | 33.5                                             |
|                                                                                                                                                     |                                        |                                                                             | 20                                                                                                                                  | 6.3                                                  | 21.6                                                                                                                                                                | 58.6                                             |
|                                                                                                                                                     |                                        |                                                                             | 25                                                                                                                                  | 6.0                                                  | 20.5                                                                                                                                                                | 55.1                                             |
|                                                                                                                                                     |                                        |                                                                             | 35                                                                                                                                  | 6.0                                                  | 20.5                                                                                                                                                                | 55.1                                             |
| Nominal Output Torque                                                                                                                               | N•m                                    | 2                                                                           | 45                                                                                                                                  | 6.0                                                  | 20.5                                                                                                                                                                | 55.1                                             |
|                                                                                                                                                     | 14 • 111                               |                                                                             | 49                                                                                                                                  | 5.6                                                  | 19.2                                                                                                                                                                | 51.8                                             |
|                                                                                                                                                     |                                        |                                                                             | 63                                                                                                                                  | 5.6                                                  | 19.2                                                                                                                                                                | 51.8                                             |
|                                                                                                                                                     |                                        |                                                                             | 81                                                                                                                                  | 5.4                                                  | 18.5                                                                                                                                                                | 50.0                                             |
|                                                                                                                                                     |                                        | Stage                                                                       | Ratio                                                                                                                               | PBE-42                                               | PBE-60T                                                                                                                                                             | PBE-90T                                          |
|                                                                                                                                                     |                                        |                                                                             | 125                                                                                                                                 | 6.0                                                  | 20.5                                                                                                                                                                | 55.1                                             |
|                                                                                                                                                     |                                        |                                                                             | 175                                                                                                                                 | 6.0                                                  | 20.5                                                                                                                                                                | 55.1                                             |
|                                                                                                                                                     |                                        |                                                                             | 225                                                                                                                                 | 6.0                                                  | 20.5                                                                                                                                                                | 55.1                                             |
|                                                                                                                                                     |                                        | 3                                                                           | 245                                                                                                                                 | 6.0                                                  | 20.5                                                                                                                                                                | 55.1                                             |
|                                                                                                                                                     |                                        |                                                                             | 315                                                                                                                                 | 6.0                                                  | 20.5                                                                                                                                                                | 55.1                                             |
|                                                                                                                                                     |                                        |                                                                             | 405                                                                                                                                 | 6.0                                                  | 20.5                                                                                                                                                                | 55.1                                             |
|                                                                                                                                                     |                                        |                                                                             | 567                                                                                                                                 | 5.6                                                  | 19.2                                                                                                                                                                | 51.8                                             |
|                                                                                                                                                     |                                        |                                                                             | 729                                                                                                                                 | 5.4                                                  | 18.5                                                                                                                                                                | 50.0                                             |
| - O. T                                                                                                                                              |                                        |                                                                             |                                                                                                                                     |                                                      | ominal Output Torque                                                                                                                                                | 30.0                                             |
| Emergency Stop Torque                                                                                                                               | N • m                                  |                                                                             | (* M                                                                                                                                | ax. Output Torque T2B                                | =60% of Emergency St                                                                                                                                                | op Torque)                                       |
| Nominal Input Speed                                                                                                                                 | rpm                                    | 1,2,3                                                                       | 3-729                                                                                                                               | 4000                                                 | 4000                                                                                                                                                                | 3000                                             |
| Max. Input Speed                                                                                                                                    | rpm                                    | 1,2,3                                                                       | 3-729                                                                                                                               | 8000                                                 | 6000                                                                                                                                                                |                                                  |
|                                                                                                                                                     |                                        |                                                                             |                                                                                                                                     | 8000                                                 | 6000                                                                                                                                                                | 6000                                             |
| Backlash                                                                                                                                            |                                        | 1                                                                           |                                                                                                                                     |                                                      |                                                                                                                                                                     |                                                  |
| Dackiasii                                                                                                                                           | arcmin                                 | 1 2                                                                         | 3-9<br>15-81                                                                                                                        | ≤ 9<br>≤ 12                                          | ≤ 8<br>≤ 10                                                                                                                                                         | 6000<br>≤ 7<br>≤ 9                               |
| DdCKIdSII                                                                                                                                           | arcmin                                 | 1<br>2<br>3                                                                 | 3-9                                                                                                                                 | ≦ 9                                                  | ≦ 8                                                                                                                                                                 | ≦7                                               |
| Torsional Rigidity                                                                                                                                  | arcmin<br>N • m<br>/arcmin             | 2                                                                           | 3-9<br>15-81                                                                                                                        | ≦ 9<br>≦ 12                                          | ≦ 8<br>≦ 10                                                                                                                                                         | ≦ 7<br>≤ 9                                       |
|                                                                                                                                                     | N•m                                    | 2 3                                                                         | 3-9<br>15-81<br>125-729                                                                                                             | ≦ 9<br>≦ 12<br>≦ 15                                  | ≦ 8<br>≦ 10<br>≦ 12                                                                                                                                                 | ≦ 7<br>≦ 9<br>≦ 12                               |
| Torsional Rigidity                                                                                                                                  | N • m<br>/arcmin                       | 2<br>3<br>1,2,3                                                             | 3-9<br>15-81<br>125-729<br>3-729                                                                                                    | ≤ 9<br>≤ 12<br>≤ 15<br>0.8                           | ≦ 8<br>≤ 10<br>≤ 12<br>2.0                                                                                                                                          | ≦ 7<br>≤ 9<br>≤ 12<br>7                          |
| Torsional Rigidity  Max. Radial Load                                                                                                                | N • m<br>/arcmin<br>N                  | 2<br>3<br>1,2,3                                                             | 3-9<br>15-81<br>125-729<br>3-729<br>3-729                                                                                           | ≤ 9<br>≤ 12<br>≤ 15<br>0.8                           | ≦ 8<br>≤ 10<br>≤ 12<br>2.0                                                                                                                                          | ≦ 7<br>≤ 9<br>≤ 12<br>7                          |
| Torsional Rigidity  Max. Radial Load  Max. Axial Load                                                                                               | N • m<br>/arcmin<br>N                  | 2<br>3<br>1,2,3<br>1,2,3                                                    | 3-9<br>15-81<br>125-729<br>3-729<br>3-729                                                                                           | ≦ 9<br>≤ 12<br>≤ 15<br>0.8<br>540                    | ≦ 8<br>≤ 10<br>≤ 12<br>2.0<br>1040<br>720                                                                                                                           | ≦7<br>≤9<br>≤12<br>7<br>1700                     |
| Torsional Rigidity  Max. Radial Load  Max. Axial Load  Operating Temp.                                                                              | N • m<br>/arcmin<br>N<br>N             | 2<br>3<br>1,2,3<br>1,2,3<br>1,2,3<br>1,2,3<br>1,2,3                         | 3-9<br>15-81<br>125-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-729                                                                | ≦ 9<br>≤ 12<br>≤ 15<br>0.8<br>540                    | ≦8<br>≤10<br>≤12<br>2.0<br>1040<br>720<br>-10 °C ~+90 °C                                                                                                            | ≦7<br>≤9<br>≤12<br>7<br>1700                     |
| Torsional Rigidity  Max. Radial Load  Max. Axial Load  Operating Temp.                                                                              | N • m<br>/arcmin<br>N<br>N             | 2<br>3<br>1,2,3<br>1,2,3<br>1,2,3                                           | 3-9<br>15-81<br>125-729<br>3-729<br>3-729<br>3-729<br>3-729                                                                         | ≦ 9<br>≤ 12<br>≤ 15<br>0.8<br>540                    | ≤ 8<br>≤ 10<br>≤ 12<br>2.0<br>1040<br>720<br>-10 °C ~+90 °C<br>(10,000/ Continuous op                                                                               | ≦7<br>≤9<br>≤12<br>7<br>1700                     |
| Torsional Rigidity  Max. Radial Load  Max. Axial Load  Operating Temp.  Service Life                                                                | N • m<br>/arcmin<br>N<br>N<br>°C<br>hr | 2<br>3<br>1,2,3<br>1,2,3<br>1,2,3<br>1,2,3<br>1,2,3<br>1                    | 3-9<br>15-81<br>125-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-9                                                         | ≦ 9<br>≤ 12<br>≤ 15<br>0.8<br>540                    | ≤ 8 $ ≤ 10 $ $ ≤ 12 $ $ 2.0 $ $ 1040 $ $ 720 $ $ -10 °C ~+90 °C $ $ (10,000/ Continuous op) $ $ ≥ 95%$                                                              | ≦7<br>≤9<br>≤12<br>7<br>1700                     |
| Torsional Rigidity  Max. Radial Load  Max. Axial Load  Operating Temp.  Service Life  Efficiency                                                    | N • m /arcmin  N  N  °C  hr            | 2<br>3<br>1,2,3<br>1,2,3<br>1,2,3<br>1,2,3<br>1,2,3<br>1                    | 3-9<br>15-81<br>125-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-9<br>15-81                                                | ≦ 9<br>≤ 12<br>≤ 15<br>0.8<br>540                    | ≤ 8<br>≤ 10<br>≤ 12<br>2.0<br>1040<br>720<br>-10 °C ~+90 °C<br>(10,000/ Continuous op<br>≥ 95%<br>≥ 90%                                                             | ≦7<br>≤9<br>≤12<br>7<br>1700                     |
| Torsional Rigidity  Max. Radial Load  Max. Axial Load  Operating Temp.  Service Life                                                                | N • m<br>/arcmin<br>N<br>N<br>°C<br>hr | 2<br>3<br>1,2,3<br>1,2,3<br>1,2,3<br>1,2,3<br>1,2,3<br>1<br>2<br>3          | 3-9<br>15-81<br>125-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-9<br>15-81<br>125-729<br>3-9<br>15-81                     | ≤ 9<br>≤ 12<br>≤ 15<br>0.8<br>540<br>360<br>20,000 0 | ≦8<br>≦10<br>≦12<br>2.0<br>1040<br>720<br>-10 °C ~+90 °C<br>(10,000/ Continuous op<br>≧95%<br>≥90%<br>≥85%<br>1.2<br>1.7/1.5                                        | ≦7<br>≤9<br>≤12<br>7<br>1700<br>735<br>Deration) |
| Torsional Rigidity  Max. Radial Load  Max. Axial Load  Operating Temp.  Service Life  Efficiency  Weight                                            | N • m /arcmin  N  N  °C  hr            | 2<br>3<br>1,2,3<br>1,2,3<br>1,2,3<br>1,2,3<br>1<br>2<br>3<br>1<br>2<br>3    | 3-9<br>15-81<br>125-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-9<br>15-81<br>125-729<br>3-9<br>15-81<br>125-729          | ≤ 9<br>≤ 12<br>≤ 15<br>0.8<br>540<br>360             | ≤ 8 $ ≤ 10 $ $ ≤ 12 $ $ 2.0 $ $ 1040 $ $ 720 $ $ -10 °C ~+90 °C $ $ (10,000/ Continuous op)  ≥ 95%   ≥ 90%   ≥ 85%   1.2   1.7/1.5   2.0/1.8 $                      | ≦7<br>≤9<br>≤12<br>7<br>1700<br>735              |
| Torsional Rigidity  Max. Radial Load  Max. Axial Load  Operating Temp.  Service Life  Efficiency  Weight  Mounting Position                         | N • m /arcmin  N  N  °C  hr            | 2<br>3<br>1,2,3<br>1,2,3<br>1,2,3<br>1,2,3<br>1,2,3<br>1<br>2<br>3          | 3-9<br>15-81<br>125-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-9<br>15-81<br>125-729<br>3-9<br>15-81                     | ≤ 9<br>≤ 12<br>≤ 15<br>0.8<br>540<br>360<br>20,000 0 | ≦8<br>≦10<br>≦12<br>2.0<br>1040<br>720<br>-10 °C ~+90 °C<br>(10,000/ Continuous op<br>≧95%<br>≥90%<br>≥85%<br>1.2<br>1.7/1.5                                        | ≦7<br>≤9<br>≤12<br>7<br>1700<br>735<br>Deration) |
| Torsional Rigidity  Max. Radial Load  Max. Axial Load  Operating Temp. Service Life  Efficiency  Weight  Mounting Position Noise Level <sup>2</sup> | N • m /arcmin  N  N  °C  hr  %         | 2<br>3<br>1,2,3<br>1,2,3<br>1,2,3<br>1,2,3<br>1<br>2<br>3<br>1<br>2<br>3    | 3-9<br>15-81<br>125-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-9<br>15-81<br>125-729<br>3-9<br>15-81<br>125-729<br>3-729 | ≤ 9<br>≤ 12<br>≤ 15<br>0.8<br>540<br>360<br>20,000 0 | ≤ 8 $ ≤ 10 $ $ ≤ 12 $ $ 2.0 $ $ 1040 $ $ 720 $ $ -10 °C ~+90 °C $ $ (10,000/ Continuous op)  ≤ 95%   ≥ 90%   ≤ 85%   1.2   1.7/1.5   2.0/1.8  Any direction  ≤ 64 $ | ≦7<br>≤9<br>≤12<br>7<br>1700<br>735<br>Deration) |
| Torsional Rigidity  Max. Radial Load  Max. Axial Load  Operating Temp.  Service Life  Efficiency  Weight  Mounting Position                         | N • m /arcmin  N  N  °C  hr  %  kg     | 2<br>3<br>1,2,3<br>1,2,3<br>1,2,3<br>1,2,3<br>1<br>2<br>3<br>1,2,3<br>1,2,3 | 3-9<br>15-81<br>125-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-729<br>3-9<br>15-81<br>125-729<br>3-9<br>15-81<br>125-729<br>3-729 | ≤ 9<br>≤ 12<br>≤ 15<br>0.8<br>540<br>360<br>20,000 0 | ≤ 8 $ ≤ 10 $ $ ≤ 12 $ $ 2.0 $ $ 1040 $ $ 720 $ $ -10 °C ~+90 °C $ $ (10,000/ Continuous op ≤ 95%  ≤ 90%   ≤ 85%   1.2   1.7/1.5   2.0/1.8  Any direction$           | ≦7<br>≤9<br>≤12<br>7<br>1700<br>735<br>Deration) |

<sup>\* 1.</sup> Applied to the output shaft center @100rpm.
\* 2. Measured at 3000rpm with no load
\* The above figures/specifications are subject to change without prior notice.

# **PLANETARY GEARHEADS**

PHL Series

> PHFR Series

PHF

PGH Series

PUR (

PUL

IH PGI

PGC Series

PGE

PGRH Series

Fig. Ser Ser Ser

R PGF

Series

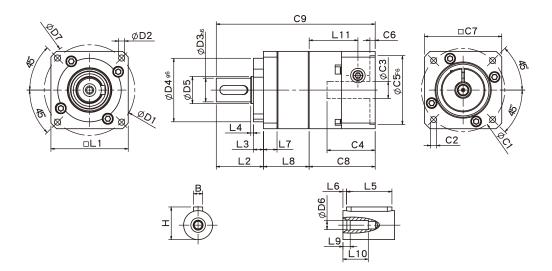
Series PEC

PEE

PBC Series

PBE Series

PAE Series

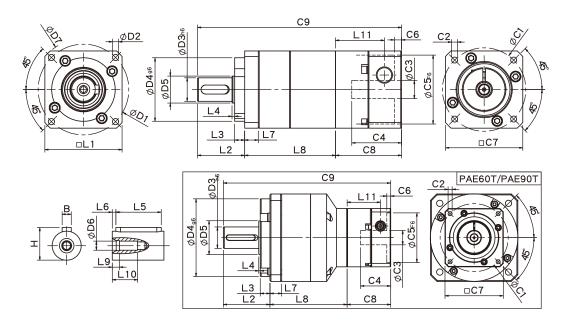









## PAE Single Stage Dimensions




## Specifications

| Dimensions         | PAE42   | PAE60   | PAE90       | PAE115 |
|--------------------|---------|---------|-------------|--------|
| D1                 | 50      | 70      | 100         | -      |
| D2                 | 3.4     | 5.5     | 6.5         | -      |
| D3 h6              | 13      | 16      | 22          | -      |
| D4 g6              | 35      | 50      | 80          | -      |
| D5                 | 15      | 20      | 35          | -      |
| D6                 | M4x0.7P | M5x0.8P | M8x1.25P    | -      |
| D7                 | 56      | 80      | 118         | -      |
| L1                 | 42.6    | 60      | 90          | -      |
| L2                 | 26      | 37      | 48          | -      |
| L3                 | 5.5     | 7       | 10          | -      |
| L4                 | 1.5     | 1.5     | 1.5         | -      |
| L5                 | 15      | 25      | 32          | -      |
| L6                 | 2       | 2       | 3           | -      |
| L7                 | 7.5     | 10      | 12          | -      |
| L8                 | 25.2    | 36.3    | 41.8        | -      |
| L9                 | 4       | 4       | 4.5         | -      |
| L10                | 14      | 16.5    | 20.5        | -      |
| L11                | 26.9    | 34.3    | 41.5        | -      |
| C1 <sup>2</sup>    | 46      | 70      | 90          | -      |
| C2 <sup>2</sup>    | M4x0.7P | M5x0.8P | M6x1.0P     | -      |
| C3 <sup>2</sup>    | ≦8/≦11  | ≦14/≦19 | ≦19/≦24/≦28 | -      |
| C4 <sup>2</sup>    | 26.5    | 33.5    | 41          | -      |
| C5 <sup>2</sup> F6 | 30      | 50      | 70          | -      |
| C6 <sup>2</sup>    | 4       | 4       | 6           | -      |
| C7 <sup>2</sup>    | 42.6    | 60      | 92          | -      |
| C8 <sup>2</sup>    | 36.4    | 44.8    | 55.8        | -      |
| C9 <sup>2</sup>    | 87.6    | 118.1   | 145.6       | -      |
| В                  | 5       | 5       | 6           | -      |
| Н                  | 15      | 18      | 24.5        | -      |

 $<sup>\</sup>bigstar \ \text{C1} \sim \text{C9 are motor specific dimensions(metric std shown ), Size may vary according to the motor flange chosen.}$ 

 $<sup>\</sup>star$  Specification subject to change without notice.



### **Specifications**

| Dimensions         | PAE42   | PAE60/PAE60T |         | PAE90/PAE 90T                         |                          | PAE115T |
|--------------------|---------|--------------|---------|---------------------------------------|--------------------------|---------|
| D1                 | 50      | 7            | 0       | 10                                    | 100                      |         |
| D2                 | 3.4     | 5            | .5      | 6                                     | 6.5                      |         |
| D3 h6              | 13      | 1            | 6       | 2                                     | 22                       |         |
| D4 g6              | 35      | 5            | 0       | 80                                    |                          | -       |
| D5                 | 15      | 2            | 0       | 35                                    |                          | -       |
| D6                 | M4x0.7P | M5x          | 0.8P    | M8x1.25P                              |                          | -       |
| D7                 | 56      | 80           |         | 118                                   |                          | -       |
| L1                 | 42.6    | 60           |         | 90                                    |                          | -       |
| L2                 | 26      | 37           |         | 48                                    |                          | -       |
| L3                 | 5.5     | 7            |         | 10                                    |                          | -       |
| L4                 | 1.5     | 1.5          |         | 1.5                                   |                          | -       |
| L5                 | 15      | 25           |         | 32                                    |                          | -       |
| L6                 | 2       | 2            |         | 3                                     |                          | -       |
| L7                 | 7.5     | 10           |         | 12                                    |                          | -       |
| L8                 | 50.1    | 67           | 62.6    | 82.8                                  | 79.4                     | -       |
| L9                 | 4       | 4            |         | 4.5                                   |                          | -       |
| L10                | 14      | 16.5         |         | 20.5                                  |                          | -       |
| L11                | 26.9    | 34.3         | 26.9    | 41.5                                  | 34.3                     | -       |
| C1 <sup>2</sup>    | 46      | 70           | 46      | 90                                    | 70                       | -       |
| C2 <sup>2</sup>    | M4x0.7P | M5x0.8P      | M4x0.7P | M6x1.0P                               | M5x0.8P                  | -       |
| C3 <sup>2</sup>    | ≦8/≦11  | ≦14/≦19      | ≦8/≦11  | <u>≤</u> 19/ <u>≤</u> 24/ <u>≤</u> 28 | <u>≤</u> 14/ <u>≤</u> 19 | -       |
| C4 <sup>2</sup>    | 26.5    | 33.5         | 26.5    | 41                                    | 33.5                     | -       |
| C5 <sup>2</sup> F6 | 30      | 50           | 30      | 70                                    | 50                       | -       |
| C6 <sup>2</sup>    | 4       | 4            | 4       | 6                                     | 4                        | -       |
| C7 <sup>2</sup>    | 42.6    | 60           | 42.6    | 92                                    | 60                       | -       |
| C8 <sup>2</sup>    | 36.4    | 44.8         | 36.4    | 55.8                                  | 44.8                     | -       |
| C9 <sup>2</sup>    | 112.5   | 148.8        | 136     | 186.6                                 | 172.2                    | -       |
| В                  | 5       | 5            |         | 6                                     |                          | -       |
| Н                  | 15      | 18           |         | 24.5                                  |                          | -       |

 $<sup>\</sup>star$  C1~C9 are motor specific dimensions(metric std shown ), Size may vary according to the motor flange chosen.

 $<sup>\</sup>bigstar$  Specification subject to change without notice.

# PAE Specifications Table

| Specifica                | tions             | Stage | Ratio                | PAE-42                                | PAE-60            | PAE-90     | PAE-115  |
|--------------------------|-------------------|-------|----------------------|---------------------------------------|-------------------|------------|----------|
|                          |                   |       | 3                    | 11                                    | 34                | 90         | 250      |
|                          |                   |       | 4                    | 10                                    | 32                | 80         | 240      |
|                          |                   |       | 5                    | 11                                    | 35                | 95         | 270      |
|                          |                   | 1     | 7                    | 10                                    | 28                | 85         | 220      |
|                          |                   |       | 9                    | 8                                     | 23                | 75         | 210      |
|                          |                   |       | 10                   | 8                                     | 21                | 65         | 190      |
|                          |                   |       |                      |                                       |                   |            |          |
|                          |                   | Stage | Ratio                | PAE-42                                | PAE-60(T)         | PAE-90(T)  | PAE-115T |
| Nominal Output Tord      | que N•m           |       | 15                   | 11                                    | 34                | 90         | 250      |
|                          |                   |       | 20                   | 10                                    | 32                | 80         | 240      |
|                          |                   |       | 25                   | 11                                    | 35                | 95         | 270      |
|                          |                   |       | 35                   | 11                                    | 35                | 95         | 270      |
|                          |                   | 2     | 45                   | 11                                    | 35                | 95         | 270      |
|                          |                   |       | 49                   | 10                                    | 28                | 85         | 220      |
|                          |                   |       | 63                   | 10                                    | 28                | 85         | 220      |
|                          |                   |       | 81                   | 8                                     | 23                | 75         | 210      |
|                          |                   |       | 100                  | 8                                     | 21                | 65         | 190      |
|                          |                   |       | 100                  |                                       | s of Nominal Outp |            | 130      |
| Emergency Stop Toro      | que N•m           |       | (* N                 |                                       | ue T2B =60% of Er |            | rque)    |
| Nominal Input Spee       | ed rpm            | 1,2   | 3-100                | 4000                                  | 4000              | 3000       | 2500     |
| Max. Input Speed         | rpm               | 1,2   | 3-100                | 8000                                  | 6000              | 6000       | 5000     |
| Standard Backlash F      | 2 arcmin          | 1     | 3-10                 | ≦ 9                                   | ≦ 8               | ≦ 7        | ≦ 6      |
| Staridard Backlasiri     |                   | 2     | 12-100               | ≦ 12                                  | ≦ 10              | ≦ 9        | ≦ 8      |
| Torsional Rigidity       | N • m<br>/arcmin  | 1,2   | 3-100                | 1.5                                   | 4                 | 8.5        | 17       |
| Max. Radial Load         | N                 | 1,2   | 3-100                | 760                                   | 1250              | 2030       | 4200     |
| Max. Axial Load          | N                 | 1,2   | 3-100                | 410                                   | 700               | 1200       | 2600     |
| Operating Temp.          | °C                |       | 3-100                | -10 °C ~+90 °C                        |                   |            |          |
| Service Life             | hr                |       | 3-100                | 20,000 (10,000/ Continuous operation) |                   |            | on)      |
| Efficiency               | %                 | 1 2   | 3-10<br>12-100       | ≥ 95%<br>≥ 90%                        |                   |            |          |
| 147.14                   |                   | 1     | 3-10                 | 0.6                                   | 1.3               | 3.2        | 7.5      |
| Weight                   | kg                | 2     | 12-100               | 0.8                                   | 1.8/1.6           | 4.8/3.7    | 9.2      |
| Mounting Position        | ı -               | 1,2   | 3-100                |                                       | Any di            | rection    |          |
| Noise Level <sup>2</sup> | dBA/1m            | 1,2   | 3-100                | 61                                    | 63                | 66         | 67       |
| Protection Class         | -                 | 1,2   | 3-100                |                                       | IP                | 65         |          |
| Lubrication              | -                 | 1,2   | 3-100                |                                       | Synthetic         | Lubricant  |          |
| Inertia(J1)              |                   |       |                      |                                       |                   |            |          |
| Stage                    | Ratio             |       | unit                 | PAE-42                                | PAE-60            | PAE-90     | PAE-115  |
|                          | 3                 |       |                      | 0.04                                  | 0.23              | 0.77       | 2.30     |
| 1                        | 4                 |       |                      | 0.03                                  | 0.21              | 0.67       | 1.92     |
|                          | 5                 |       |                      | 0.03                                  | 0.21              | 0.61       | 1.71     |
|                          | 7                 |       |                      | 0.03                                  | 0.21              | 0.60       | 1.65     |
| C                        | 9                 |       | Kg • cm <sup>2</sup> | 0.03                                  | 0.21              | 0.60       | 1.63     |
| Stage                    | Ratio             |       |                      | PAE-42                                | PAE-60(T)         | PAE-90(T)  | PAE-115T |
|                          | 15/20/25          |       |                      | 0.03                                  | 0.21(0.03)        | 0.61(0.21) | 0.61     |
| 2                        | 35/49<br>45/63/81 |       |                      | 0.03                                  | 0.21(0.03)        | 0.60(0.21) | 0.60     |
|                          | 45/63/81          |       |                      | 0.03                                  | 0.21(0.03)        | 0.60(0.21) | 0.00     |

<sup>\* 1.</sup> Applied to the output shaft center @100rpm. \* 2. Measured at 3000rpm with no load

<sup>\*</sup> The above figures/specifications are subject to change without prior notice.



# Tightening Torque Table

### Tightening Torque Recommended for Motor Mounting Bolt

| Bolt Size | Width Across Flats | dth Across Flats Strength 12.9 Tightening Torque |        |
|-----------|--------------------|--------------------------------------------------|--------|
|           | mm                 | N-m                                              | In-lbs |
| M3*0.5P   | 2.5                | 2.1                                              | 19     |
| M4*0.7P   | 3                  | 4.9                                              | 44     |
| M5*0.8P   | 4                  | 9.8                                              | 87     |
| M6*1P     | 5                  | 17                                               | 151    |
| M8*1.25P  | 6                  | 41                                               | 364    |
| M10*1.5P  | 8                  | 80                                               | 709    |
| M12*1.75P | 10                 | 139                                              | 1232   |
| M14*2P    | 12                 | 223                                              | 1976   |
| M16*2P    | 14                 | 343                                              | 3038   |



599, Sec 1, Hemu Rd., Shengang, Taichung, 42953, Taiwan

TEL: +886-4-2561-0011 FAX: +886-4-2562-7766 www.sesamemotor.com info@sesamemotor.com.tw Skype Phone: sesame\_motor

Copyright © 2016 Sesame Motor Corp. All rights reserved



AGENT

